
NEU CY 5770 Software Vulnerabilities and
Security

Instructor: Dr. Ziming Zhao

Today

1. Heap exploitation
a. What is heap and dynamic memory allocator?
b. Malloc and free interfaces
c. Ptmalloc and tcache

i. Malloc_chunk
d. Heap exploitation

i. Overflow
ii. Use-after-free

Some slides are from Yan Shoshitaishvili, Arizona State University

Memory Map of Linux Process (32 bit system)

https://manybutfinite.com/post/
anatomy-of-a-program-in-me
mory/

https://manybutfinite.com/post/anatomy-of-a-program-in-memory/
https://manybutfinite.com/post/anatomy-of-a-program-in-memory/
https://manybutfinite.com/post/anatomy-of-a-program-in-memory/

The Heap

The heap is pool of memory used for dynamic allocations at runtime.

Heap memory is different from stack memory in that it is persistent
between functions.

– malloc() grabs memory on the heap; keyword new in C++
– free() releases memory on the heap; keyword delete in C++

Both are standard C library interfaces. Neither of them directly mapps to
a system call.

Why not mmap()?

Mmap()
● Mmap() is a system call. So kernel is involved, which means slow.
● Can only allocate multiples of pages (4KB).

Hence, the idea of dynamic memory allocator

Dynamic memory allocators

Doug Lea malloc or dlmalloc: Release to public in 1987. Native version of malloc in some old
distributions of Linux (http://gee.cs.oswego.edu/dl/html/malloc.html)

ptmalloc: ptmalloc is based on dlmalloc and was extended for use with multiple threads. On Linux
systems, ptmalloc has been put to work for years as part of the GNU C library.

tcmalloc: Google's customized implementation of C's malloc() and C++'s operator new
(https://github.com/google/tcmalloc)

jemalloc: jemalloc is a general purpose malloc(3) implementation that emphasizes fragmentation
avoidance and scalable concurrency support. Used in FreeBSD, firefox, Android.

Hoard memory allocator: UMass Amherst CS Professor Emery Berger

Kmalloc: Linux kernel memory allocator

Kalloc: iOS kernel memory allocator

Segment Heap, NT Heap: Windows implementations.

http://gee.cs.oswego.edu/dl/html/malloc.html
https://github.com/google/tcmalloc

malloc() and free()

void* malloc(size_t size);

Allocates size bytes of uninitialized storage. If allocation
succeeds, returns a pointer that is suitably aligned for any
object type with fundamental alignment.

void free(void* ptr);

Deallocates the space previously allocated by malloc(), etc.

stdlib.h provides with standard library functions to access, modify
and manage dynamic memory.

http://en.cppreference.com/w/c/types/size_t
https://en.cppreference.com/w/c/memory/malloc

calloc() and realloc()

void *calloc(size_t nitems, size_t size)

The difference in malloc and calloc is that malloc does not
set the memory to zero whereas calloc sets allocated memory
to zero.

void *realloc(void *ptr, size_t size)

Resize the memory block pointed to by ptr that was
previously allocated with a call to malloc or calloc.

How to use malloc() and free()

int main()
{

char * buffer = NULL;

/* allocate a 0x100 byte buffer */
buffer = malloc(0x100);

/* read input and print it */
fgets(stdin, buffer, 0x100);
printf(“Hello %s!\n”, buffer);

/* destroy our dynamically allocated buffer */
free(buffer);
return 0;

}

Heap vs. Stack

Heap
● Dynamic memory

allocations at runtime

● Objects, big buffers,
structs, persistence,
larger things

Slower, Manual
– Done by the programmer
– malloc/calloc/recalloc/free
– new/delete

Stack
● Fixed memory allocations

known at compile time

● Local variables, return
addresses, function args

Fast, Automatic; Done by the
compiler
– Abstracts away any concept
of allocating/de-allocating

Which implementation on our server?

ldd --version

GLIBC 2.31, Ptmalloc2

https://elixir.bootlin.com/glibc/glibc-2.31/source/malloc/malloc.c

Disclaimer: Ptmalloc is very complex, and its implementation is
constantly changing. This is an approximation to glibc 2.31

https://elixir.bootlin.com/glibc/glibc-2.31/source/malloc/malloc.c

Memory Map of Linux Process (32 bit system)

https://manybutfinite.com/post/
anatomy-of-a-program-in-me
mory/

https://manybutfinite.com/post/anatomy-of-a-program-in-memory/
https://manybutfinite.com/post/anatomy-of-a-program-in-memory/
https://manybutfinite.com/post/anatomy-of-a-program-in-memory/

How does ptmalloc get memory?

● Use the mmap() system call for large memory request
● Use brk() and sbrk() system calls

○ sbrk(NULL) returns the current program break
○ sbrk(200) expands program break by 200 bytes
○ brk(addr) expands the program break to address

Heap chunk: malloc_chunk (ptmalloc2 in glibc2.31; no tcache)

https://elixir.bootlin.com/glibc/glibc-2.31/source/malloc/malloc.c

struct malloc_chunk {

 INTERNAL_SIZE_T mchunk_prev_size; /* Size of previous chunk (if free). */
 INTERNAL_SIZE_T mchunk_size; /* Size in bytes, including overhead. */

 struct malloc_chunk* fd; /* double links -- used only if free. */
 struct malloc_chunk* bk;

 /* Only used for large blocks: pointer to next larger size. */
 struct malloc_chunk* fd_nextsize; /* double links -- used only if free. */
 struct malloc_chunk* bk_nextsize;
};

INTERNAL_SIZE_T is the same as size_t. 8 bytes in 64 bit;
4 bytes in 32 bits machine.
Pointer is 8/4 bytes on a 64/32 bit machine, respectively.

Alignment is defined as 2 * (sizeof(size_t))

For both in-use and freed

Only for freed

Two states: in-use and freed

The freed chunks are double-linked

https://elixir.bootlin.com/glibc/glibc-2.31/C/ident/malloc_chunk
https://elixir.bootlin.com/glibc/glibc-2.31/C/ident/INTERNAL_SIZE_T
https://elixir.bootlin.com/glibc/glibc-2.31/C/ident/mchunk_prev_size
https://elixir.bootlin.com/glibc/glibc-2.31/C/ident/INTERNAL_SIZE_T
https://elixir.bootlin.com/glibc/glibc-2.31/C/ident/mchunk_size
https://elixir.bootlin.com/glibc/glibc-2.31/C/ident/malloc_chunk
https://elixir.bootlin.com/glibc/glibc-2.31/C/ident/fd
https://elixir.bootlin.com/glibc/glibc-2.31/C/ident/malloc_chunk
https://elixir.bootlin.com/glibc/glibc-2.31/C/ident/bk
https://elixir.bootlin.com/glibc/glibc-2.31/C/ident/malloc_chunk
https://elixir.bootlin.com/glibc/glibc-2.31/C/ident/fd_nextsize
https://elixir.bootlin.com/glibc/glibc-2.31/C/ident/malloc_chunk
https://elixir.bootlin.com/glibc/glibc-2.31/C/ident/bk_nextsize
https://elixir.bootlin.com/glibc/glibc-2.31/C/ident/INTERNAL_SIZE_T

buf

Chunk Size: Size of entire chunk
including overhead

Flags: Because of byte alignment,
the lower 3 bits of the chunk size
field would always be zero. Instead
they are used for flag bits.

0x01 PREV_INUSE – set when
previous chunk is in use

0x02 IS_MMAPPED – set if chunk
was obtained with mmap()

0x04 NON_MAIN_ARENA – set if
chunk belongs to a thread arena

Heap chunk: malloc_chunk (ptmalloc2 in glibc2.31; no tcache)

glibc 2.3 allows for many heaps arranged into several arenas—one arena for each thread

Heap chunk: malloc_chunk (ptmalloc2 in glibc2.31; no tcache)

Bins (no tcache)

A bin is a list (doubly or singly linked list) of free (non-allocated) chunks.
Bins are differentiated based on the size of chunks they contain:

● Fast bin. Introduced long before tcache (part of original ptmalloc design). Used for
very small chunks (e.g., ≤ 64 bytes). Each fast bin is a single-linked list (no coalescing
on free). Shared between threads (i.e., global per arena). Chunks are added here when
tcache is full or not enabled.

● Small bin. Manage small freed chunks not handled by fast bins or tcache.
Double-linked circular lists.

● Large bin. Manage freed chunks larger than 512 bytes.
● Unsorted bin. Temporary holding place for freed chunks before being placed into

small or large bins.
● Top chunk. unallocated space at the top of the heap. No existing bin has a suitable

chunk, and heap grows via sbrk.

Tcache Design
"Thread Cache" in ptmalloc, to speed up repeated (small) allocations in a single
thread. Size range is configurable.

Implemented as a singly-linked list, with each thread having a list header for
different-sized allocations.

https://elixir.bootlin.com/glibc/glibc-2.31.9000/source/malloc/malloc.c#L2906

ptmalloc2 in glibc2.31; tcache design

1. Every bin is a singly-linked list of chunks of that specific size.

2. Each thread has its own tcache_perthread_struct, which
contains an array of these bins.

Heap chunk: malloc_chunk (ptmalloc2 in glibc2.31; tcache)

https://elixir.bootlin.com/glibc/glibc-2.31.9000/source/malloc/malloc.c#L2890

struct malloc_chunk {

 INTERNAL_SIZE_T mchunk_prev_size; /* Size of previous chunk (if free). */
 INTERNAL_SIZE_T mchunk_size; /* Size in bytes, including overhead. */

 struct malloc_chunk* fd; /* double links -- used only if free. */
 struct malloc_chunk* bk;

 /* Only used for large blocks: pointer to next larger size. */
 struct malloc_chunk* fd_nextsize; /* double links -- used only if free. */
 struct malloc_chunk* bk_nextsize;
};

Both in-use and freed

Not used in tcache. Can be used by the previous chunk

Two states: in-use and freed

fastbin/smallbin

https://elixir.bootlin.com/glibc/glibc-2.31/C/ident/malloc_chunk
https://elixir.bootlin.com/glibc/glibc-2.31/C/ident/INTERNAL_SIZE_T
https://elixir.bootlin.com/glibc/glibc-2.31/C/ident/mchunk_prev_size
https://elixir.bootlin.com/glibc/glibc-2.31/C/ident/INTERNAL_SIZE_T
https://elixir.bootlin.com/glibc/glibc-2.31/C/ident/mchunk_size
https://elixir.bootlin.com/glibc/glibc-2.31/C/ident/malloc_chunk
https://elixir.bootlin.com/glibc/glibc-2.31/C/ident/fd
https://elixir.bootlin.com/glibc/glibc-2.31/C/ident/malloc_chunk
https://elixir.bootlin.com/glibc/glibc-2.31/C/ident/bk
https://elixir.bootlin.com/glibc/glibc-2.31/C/ident/malloc_chunk
https://elixir.bootlin.com/glibc/glibc-2.31/C/ident/fd_nextsize
https://elixir.bootlin.com/glibc/glibc-2.31/C/ident/malloc_chunk
https://elixir.bootlin.com/glibc/glibc-2.31/C/ident/bk_nextsize

Heap chunk: malloc_chunk (ptmalloc2 in glibc2.31; tcache)

https://elixir.bootlin.com/glibc/glibc-2.31.9000/source/malloc/malloc.c#L2890

struct malloc_chunk {

 INTERNAL_SIZE_T mchunk_prev_size; /* Size of previous chunk (if free). */
 INTERNAL_SIZE_T mchunk_size; /* Size in bytes, including overhead. */

 tcache_entry
};

Both in-use and freed

Not used in tcache. Can be used by the previous chunk

Two states: in-use and freed

fastbin/smallbin

https://elixir.bootlin.com/glibc/glibc-2.31/C/ident/malloc_chunk
https://elixir.bootlin.com/glibc/glibc-2.31/C/ident/INTERNAL_SIZE_T
https://elixir.bootlin.com/glibc/glibc-2.31/C/ident/mchunk_prev_size
https://elixir.bootlin.com/glibc/glibc-2.31/C/ident/INTERNAL_SIZE_T
https://elixir.bootlin.com/glibc/glibc-2.31/C/ident/mchunk_size

ptmalloc2 in glibc2.31; tcache design

fastbin/smallbin

typedef struct tcache_perthread_struct
{
 char counts[TCACHE_MAX_BINS];
 tcache_entry *entries[TCACHE_MAX_BINS];
} tcache_perthread_struct;

typedef struct tcache_entry
{
 struct tcache_entry *next;
 struct tcache_perthread_struct *key;
} tcache_entry;

Singly-linked list tcache_perthread_struct Bën

 counts: ...

 entries: ...entry_16: &A entry_32: &C entry_48: &D

count_16: 2 count_32: 3 count_48: 1

entry_64: NULL

count_64: 0

tcache_entry A

key: &Bën

next: &B

tcache_entry C

key: &Bën

next: &E

tcache_entry D

key: &Bën

next: NULL

tcache_entry B

key: &Bën

next: NULL

tcache_entry E

key: &Bën

next: &F

tcache_entry F

key: &Bën

next: NULL

a = malloc(16);
b = malloc(16);
c = malloc(32);
d = malloc(48);
e = malloc(32);
f = malloc(32);

// allocations that are not freed
// don't show up in the tcache!
x = malloc(64);
y = malloc(64);
z = malloc(64);

// later freed allocations show up
// earlier in the tcache list order
free(b);
free(a);
free(f);
free(e);
free(c);
free(d);

How did we get here? tcache_perthread_struct Bën

 counts: ...

 entries: ...entry_16: &A entry_32: &C entry_48: &D

count_16: 2 count_32: 3 count_48: 1

entry_64: NULL

count_64: 0

tcache_entry A

key: &Bën

next: &B

tcache_entry C

key: &Bën

next: &E

tcache_entry D

key: &Bën

next: NULL

tcache_entry B

key: &Bën

next: NULL

tcache_entry E

key: &Bën

next: &F

tcache_entry F

key: &Bën

next: NULL

tcache_entry X

key: NULL

next: NULL

tcache_entry Y

key: NULL

next: NULL

tcache_entry Z

key: NULL

next: NULL

a = malloc(16);
b = malloc(16);
c = malloc(32);
d = malloc(48);
e = malloc(32);
f = malloc(32);

// allocations that are not freed
// don't show up in the tcache!
x = malloc(64);
y = malloc(64);
z = malloc(64);

// later freed allocations show up
// earlier in the tcache list order
free(b);
free(a);
free(f);
free(e);
free(c);
free(d);

tcache_perthread_struct Bën

 counts: ...

 entries: ...entry_16: NULL entry_32: NULL entry_48: NULL

count_16: 0 count_32: 0 count_48: 0

entry_64: NULL

count_64: 0

tcache_entry A

key: NULL

next: NULL

tcache_entry C

key: NULL

next: NULL

tcache_entry D

key: NULL

next: NULL

tcache_entry B

key: NULL

next: NULL

tcache_entry E

key: NULL

next: NULL

tcache_entry F

key: NULL

next: NULL

tcache_entry X

key: NULL

next: NULL

tcache_entry Y

key: NULL

next: NULL

tcache_entry Z

key: NULL

next: NULL

How did we get here?

a = malloc(16);
b = malloc(16);
c = malloc(32);
d = malloc(48);
e = malloc(32);
f = malloc(32);

// allocations that are not freed
// don't show up in the tcache!
x = malloc(64);
y = malloc(64);
z = malloc(64);

// later freed allocations show up
// earlier in the tcache list order
free(b);
free(a);
free(f);
free(e);
free(c);
free(d);

tcache_perthread_struct Bën

 counts: ...

 entries: ...entry_16: &B entry_32: NULL entry_48: NULL

count_16: 1 count_32: 0 count_48: 0

entry_64: NULL

count_64: 0

tcache_entry A

key: NULL

next: NULL

tcache_entry C

key: NULL

next: NULL

tcache_entry D

key: NULL

next: NULL

tcache_entry B

key: Bën

next: NULL

tcache_entry E

key: NULL

next: NULL

tcache_entry F

key: NULL

next: NULL

tcache_entry X

key: NULL

next: NULL

tcache_entry Y

key: NULL

next: NULL

tcache_entry Z

key: NULL

next: NULL

How did we get here?

a = malloc(16);
b = malloc(16);
c = malloc(32);
d = malloc(48);
e = malloc(32);
f = malloc(32);

// allocations that are not freed
// don't show up in the tcache!
x = malloc(64);
y = malloc(64);
z = malloc(64);

// later freed allocations show up
// earlier in the tcache list order
free(b);
free(a);
free(f);
free(e);
free(c);
free(d);

tcache_perthread_struct Bën

 counts: ...

 entries: ...entry_16: &A entry_32: NULL entry_48: NULL

count_16: 2 count_32: 0 count_48: 0

entry_64: NULL

count_64: 0

tcache_entry A

key: Bën

next: &B

tcache_entry C

key: NULL

next: NULL

tcache_entry D

key: NULL

next: NULL

tcache_entry B

key: Bën

next: NULL

tcache_entry E

key: NULL

next: NULL

tcache_entry F

key: NULL

next: NULL

tcache_entry X

key: NULL

next: NULL

tcache_entry Y

key: NULL

next: NULL

tcache_entry Z

key: NULL

next: NULL

How did we get here?

a = malloc(16);
b = malloc(16);
c = malloc(32);
d = malloc(48);
e = malloc(32);
f = malloc(32);

// allocations that are not freed
// don't show up in the tcache!
x = malloc(64);
y = malloc(64);
z = malloc(64);

// later freed allocations show up
// earlier in the tcache list order
free(b);
free(a);
free(f);
free(e);
free(c);
free(d);

tcache_perthread_struct Bën

 counts: ...

 entries: ...entry_16: &A entry_32: &F entry_48: NULL

count_16: 2 count_32: 1 count_48: 0

entry_64: NULL

count_64: 0

tcache_entry A

key: Bën

next: &B

tcache_entry C

key: NULL

next: NULL

tcache_entry D

key: NULL

next: NULL

tcache_entry B

key: Bën

next: NULL

tcache_entry E

key: NULL

next: NULL

tcache_entry F

key: Bën

next: NULL

tcache_entry X

key: NULL

next: NULL

tcache_entry Y

key: NULL

next: NULL

tcache_entry Z

key: NULL

next: NULL

How did we get here?

a = malloc(16);
b = malloc(16);
c = malloc(32);
d = malloc(48);
e = malloc(32);
f = malloc(32);

// allocations that are not freed
// don't show up in the tcache!
x = malloc(64);
y = malloc(64);
z = malloc(64);

// later freed allocations show up
// earlier in the tcache list order
free(b);
free(a);
free(f);
free(e);
free(c);
free(d);

tcache_perthread_struct Bën

 counts: ...

 entries: ...entry_16: &A entry_32: &E entry_48: NULL

count_16: 2 count_32: 2 count_48: 0

entry_64: NULL

count_64: 0

tcache_entry A

key: Bën

next: &B

tcache_entry C

key: NULL

next: NULL

tcache_entry D

key: NULL

next: NULL

tcache_entry B

key: Bën

next: NULL

tcache_entry E

key: Bën

next: &F

tcache_entry F

key: Bën

next: NULL

tcache_entry X

key: NULL

next: NULL

tcache_entry Y

key: NULL

next: NULL

tcache_entry Z

key: NULL

next: NULL

How did we get here?

a = malloc(16);
b = malloc(16);
c = malloc(32);
d = malloc(48);
e = malloc(32);
f = malloc(32);

// allocations that are not freed
// don't show up in the tcache!
x = malloc(64);
y = malloc(64);
z = malloc(64);

// later freed allocations show up
// earlier in the tcache list order
free(b);
free(a);
free(f);
free(e);
free(c);
free(d);

tcache_perthread_struct Bën

 counts: ...

 entries: ...entry_16: &A entry_32: &C entry_48: NULL

count_16: 2 count_32: 3 count_48: 0

entry_64: NULL

count_64: 0

tcache_entry A

key: Bën

next: &B

tcache_entry C

key: Bën

next: &E

tcache_entry D

key: NULL

next: NULL

tcache_entry B

key: Bën

next: NULL

tcache_entry E

key: Bën

next: &F

tcache_entry F

key: Bën

next: NULL

tcache_entry X

key: NULL

next: NULL

tcache_entry Y

key: NULL

next: NULL

tcache_entry Z

key: NULL

next: NULL

How did we get here?

a = malloc(16);
b = malloc(16);
c = malloc(32);
d = malloc(48);
e = malloc(32);
f = malloc(32);

// allocations that are not freed
// don't show up in the tcache!
x = malloc(64);
y = malloc(64);
z = malloc(64);

// later freed allocations show up
// earlier in the tcache list order
free(b);
free(a);
free(f);
free(e);
free(c);
free(d);

tcache_perthread_struct Bën

 counts: ...

 entries: ...entry_16: &A entry_32: &C entry_48: &D

count_16: 2 count_32: 3 count_48: 1

entry_64: NULL

count_64: 0

tcache_entry A

key: Bën

next: &B

tcache_entry C

key: Bën

next: &E

tcache_entry D

key: Bën

next: NULL

tcache_entry B

key: Bën

next: NULL

tcache_entry E

key: Bën

next: &F

tcache_entry F

key: Bën

next: NULL

tcache_entry X

key: NULL

next: NULL

tcache_entry Y

key: NULL

next: NULL

tcache_entry Z

key: NULL

next: NULL

How did we get here?

tcache - freeing

Each tcache_entry is actually the exact allocation that was freed! On
free(), the following happens:

Select the right "bin" based on the size:
idx = (freed_allocation_size - 1) / 16;

Check to make sure the entry hasn't already been freed (double-free):
((unsigned long*)freed_allocation)[1] == &our_tcache_perthread_struct;

Push the freed allocation to the front of the list!
((unsigned long*)freed_allocation)[0] = our_tcache_perthread_struct.entries[idx];
our_tcache_perthread_struct.entries[idx] = freed_allocation;
our_tcache_perthread_struct.count[idx]++;

Record the tcache_perthread_struct associated with the freed allocation
(for checking against double-frees)
((unsigned long*)freed_allocation)[1] = &our_tcache_perthread_struct

On allocation, the following happens:

Select the bin number based on the requested size:
idx = (requested_size - 1) / 16;

Check the appropriate cache for available entries:
if our_tcache_perthread_struct.count[idx] > 0;

Reuse the allocation in the front of the list if available:
unsigned long *to_return = our_tcache_perthread_struct.entries[idx];
tcache_perthread_struct.entries[idx] = to_return[0];
tcache_perthread_struct.count[idx]--;
return to_return;

Things that are not done:
- clearing all sensitive pointers (only key is cleared for some reason).
- checking if the next (return[0]) address makes sense

tcache - allocation

Onward! tcache_perthread_struct Bën

 counts: ...

 entries: ...entry_16: &A entry_32: &C entry_48: &D

count_16: 2 count_32: 3 count_48: 1

entry_64: NULL

count_64: 0

tcache_entry A

key: &Bën

next: &B

tcache_entry C

key: &Bën

next: &E

tcache_entry D

key: &Bën

next: NULL

tcache_entry B

key: &Bën

next: NULL

tcache_entry E

key: &Bën

next: &F

tcache_entry F

key: &Bën

next: NULL

malloc(16) == a

tcache_perthread_struct Bën

 counts: ...

 entries: ...entry_16: &B entry_32: &C entry_48: &D

count_16: 1 count_32: 3 count_48: 1

entry_64: NULL

count_64: 0

tcache_entry A

key: NULL

next: &B

tcache_entry C

key: &Bën

next: &E

tcache_entry D

key: &Bën

next: NULL

tcache_entry B

key: &Bën

next: NULL

tcache_entry E

key: &Bën

next: &F

tcache_entry F

key: &Bën

next: NULL

Onward!

malloc(16) == a
malloc(32) == c
malloc(32) == e

tcache_perthread_struct Bën

 counts: ...

 entries: ...entry_16: &B entry_32: &F entry_48: &D

count_16: 1 count_32: 1 count_48: 1

entry_64: NULL

count_64: 0

tcache_entry A

key: NULL

next: &B

tcache_entry C

key: NULL

next: &E

tcache_entry D

key: &Bën

next: NULL

tcache_entry B

key: &Bën

next: NULL

tcache_entry E

key: NULL

next: &F

tcache_entry F

key: &Bën

next: NULL

Onward!

malloc(16) == a
malloc(32) == c
malloc(32) == e
malloc(48) == d
malloc(16) == b
malloc(32) == f

tcache_perthread_struct Bën

 counts: ...

 entries: ...entry_16: NULL entry_32: NULL entry_48: NULL

count_16: 0 count_32: 0 count_48: 0

entry_64: NULL

count_64: 0

tcache_entry A

key: NULL

next: &B

tcache_entry C

key: NULL

next: &E

tcache_entry D

key: NULL

next: NULL

tcache_entry B

key: NULL

next: NULL

tcache_entry E

key: NULL

next: &F

tcache_entry F

key: NULL

next: NULL

Onward!

malloc(16) == a
malloc(32) == c
malloc(32) == e
malloc(48) == d
malloc(16) == b
malloc(32) == f
malloc(64) == g

tcache_perthread_struct Bën

 counts: ...

 entries: ...entry_16: NULL entry_32: NULL entry_48: NULL

count_16: 0 count_32: 0 count_48: 0

entry_64: NULL

count_64: 0

tcache_entry G

key: NULL

next: NULL

tcache_entry A

key: NULL

next: &B

tcache_entry C

key: NULL

next: &E

tcache_entry D

key: NULL

next: NULL

tcache_entry B

key: NULL

next: NULL

tcache_entry E

key: NULL

next: &F

tcache_entry F

key: NULL

next: NULL

Onward!

code/chunk_sizes

int main()

{

 unsigned int lengths[] = {32, 4, 20, 0, 64, 32, 32, 32, 32, 32};

 unsigned int * ptr[10];

 int i;

 for(i = 0; i < 10; i++)

 ptr[i] = malloc(lengths[i]);

 for(i = 0; i < 9; i++)

 printf("malloc(%2d) is at 0x%08x, %3d bytes to the next pointer\n",

 lengths[i],

 (unsigned int)ptr[i],

 (ptr[i+1]-ptr[i])*sizeof(unsigned int));

 return 0;} https://github.com/RPISEC/MBE/bl
ob/master/src/lecture/heap/sizes.c

Heap goes from low address to high address

https://manybutfinite.com/post/
anatomy-of-a-program-in-me
mory/

https://manybutfinite.com/post/anatomy-of-a-program-in-memory/
https://manybutfinite.com/post/anatomy-of-a-program-in-memory/
https://manybutfinite.com/post/anatomy-of-a-program-in-memory/

code/chunk_sizes

int main()

{

 unsigned int lengths[] = {32, 4, 20, 0, 64, 32, 32, 32, 32, 32};

 size_t * ptr[10];

 int i;

 for(i = 0; i < 10; i++)

 ptr[i] = malloc(lengths[i]);

 for(i = 0; i < 9; i++)

 printf("malloc(%2d) is at 0x%016x, %3d bytes to the next pointer\n",

 lengths[i],

 (unsigned int)ptr[i],

 (ptr[i+1]-ptr[i])*sizeof(unsigned int));

 return 0;}

Chunk 10

...

H

L

Chunk 3

Chunk 2

Chunk 1

code/chunk_sizes 32bit

H

L

Chunk 1 - Buf (40)

Chunk 1 - Chunk Size (4)

Chunk 1 - Previo Size (4)

Chunk 2 - Buf (8)

Chunk 2 - Chunk Size (4)

Chunk 2 - Previo Size (4)

Chunk 3 - Buf (24)

Chunk 3 - Chunk Size (4)

Chunk 3 - Previo Size (4)

Chunk 4 - Buf

Chunk 4 - Chunk Size (4)

Chunk 4 - Previo Size (4)

48

16

32

Alignment is at least defined as 2 * (sizeof(size_t)) = 16

code/chunk_sizes 64bit

H

L

Chunk 1 - Buf (32)

Chunk 1 - Chunk Size (8)

Chunk 1 - Previo Size (8)

Chunk 2 - Buf (16)

Chunk 2 - Chunk Size (8)

Chunk 2 - Previo Size (8)

Chunk 3 - Buf (16)

Chunk 3 - Chunk Size (8)

Chunk 3 - Previo Size (8)

Chunk 4 - Buf

Chunk 4 - Chunk Size (8)

Chunk 4 - Previo Size (8)

48

32

32

Alignment is defined as 2 * (sizeof(size_t)) = 16

Chunk4’s previous size field is used by Chunk3

Top chunk a.k.a. wilderness

H

L

Chunk 1 - Buf (32)

Chunk 1 - Chunk Size (8)

Chunk 1 - Previo Size (8)

Chunk 2 - Buf (16)

Chunk 2 - Chunk Size (8)

Chunk 2 - Previo Size (8)

…

…

.

Top chunk

Top chunk - size
Top chunk - prev size

The topmost chunk is also known as the
'wilderness'.

It borders the end of the heap (i.e. it is at the
maximum address within the heap/arena) and is
not present in any bin.

It follows the same format of the chunk structure.

While servicing 'malloc' requests, it is used as the
last resort. If more size is required, it can grow
using the sbrk() system call. The PREV_INUSE flag
is always set for the top chunk.

In the beginning, this is the only chunk existing
and malloc first makes allocated chunks by
splitting the wilderness chunk.

code/chunk_sizes

Malloc Trivia

How many bytes on the heap are your malloc chunks really taking up?

● malloc(32); 48 bytes (32bit/64bit)
● malloc(4); 16 bytes (32bit) / 32 bytes (64bit)
● malloc(20); 32 bytes (32bit/64bit [Prev Size field reused])
● malloc(0); 16 bytes (32bit) / 32 bytes (64bit)

code/malloc_chunks

void print_chunk(size_t * ptr, unsigned int len)

{

 printf("[prev - 0x%016x][size - 0x%08x][buffer (0x%016x)] - from malloc(%d)\n", *(ptr-2), *(ptr-1), (unsigned int)ptr, len); }

int main()

{

 void * ptr[LEN];

 unsigned int lengths[] = {0, 4, 8, 16, 24, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192, 16384};

 int i;

 printf("mallocing...\n");

 for(i = 0; i < LEN; i++)

 ptr[i] = malloc(lengths[i]);

 for(i = 0; i < LEN; i++)

 print_chunk(ptr[i], lengths[i]);

 return 0;}

Modified from
https://github.com/RPISEC/MBE/bl
ob/master/src/lecture/heap/heap_c
hunks.c

code/tcache_fastbin_free
void print_inuse_chunk(size_t * ptr)

{

 printf("[prev - 0x%016x][size - 0x%016x][buffer (0x%016x)] -

Chunk 0x%016x - In use\n",

 *(ptr-2),

 *(ptr-1),

 (unsigned int)ptr,

 (unsigned int)(ptr-2));

}

void print_freed_chunk(size_t * ptr)

{

 printf("[prev - 0x%016x][size - 0x%016x][next - 0x%016x

][key - 0x%016x] - Chunk 0x%016x - Freed\n",

 *(ptr-2),

 *(ptr-1),

 *ptr,

 *(ptr+1),

 (unsigned int)(ptr-2));

}

int main()

{

 size_t * ptr[LEN];

 unsigned int lengths[] = {32, 32, 32, 32, 32}; int i;

 printf("mallocing...\n");

 for(i = 0; i < LEN; i++)

 ptr[i] = malloc(lengths[i]);

 for(i = 0; i < LEN; i++)

 print_inuse_chunk(ptr[i]);

 printf("\nfreeing all chunks...\n");

 for(i = 0; i < LEN; i++)

 free(ptr[i]);

 for(i = 0; i < LEN; i++)

 print_freed_chunk(ptr[i]);

 return 0;}

first_fit

int main()

{

fprintf(stderr, "Allocating 2 buffers. They can be large, don't have to be fastbin.\n");

char* a = malloc(0x512);

char* b = malloc(0x256);

char* c;

strcpy(a, "this is A!");

fprintf(stderr, "first allocation %p points to %s\n", a, a);

free(a);

c = malloc(0x500);

fprintf(stderr, "3rd allocation %p points to %s\n", c, c);

fprintf(stderr, "first allocation %p points to %s\n", a, a);

}

glibc uses a first-fit algorithm to select a free chunk. If a chunk is free and large enough, malloc will select this
chunk. This can be exploited in a use-after-free situation. This can be exploited in a use-after-free situation.

https://github.com/shellphish/how2heap/

malloc(0x512) == a
malloc(0x256) == b
free(a)
malloc(0x256) == a

tcache_perthread_struct Bën

 counts: ...

 entries: ...… entry: NULL …

… count_0x256: 0 …

entry: NULL

count_0x512: 0

tcache_entry A

Data

malloc(0x512) == a
malloc(0x256) == b
free(a)
malloc(0x256) == a

tcache_perthread_struct Bën

 counts: ...

 entries: ...… entry: NULL …

… count_0x256: 0 …

entry: NULL

count_0x512: 0

tcache_entry A

Data

tcache_entry B

Data

malloc(0x512) == a
malloc(0x256) == b
free(a)
malloc(0x256) == a

tcache_perthread_struct Bën

 counts: ...

 entries: ...… entry: NULL …

… count_0x256: 0 …

entry: NULL

count_0x512: 0

tcache_entry A

key: &Ben

next: NULL

tcache_entry B

Data

malloc(0x512) == a
malloc(0x256) == b
free(a)
malloc(0x256) == a

tcache_perthread_struct Bën

 counts: ...

 entries: ...… entry: NULL …

… count_0x256: 0 …

entry: NULL

count_0x512: 0

tcache_entry A

Data

tcache_entry C

key: &Ben

next: NULL

tcache_entry B

Data

Split

Another Example

char *a = malloc(20); // 0x555597d0

char *b = malloc(20); // 0x55559860

char *c = malloc(20); // 0x555598f0

char *d = malloc(20); // 0x55559980

free(a);

free(b);

free(c);

free(d);

a = malloc(20);

b = malloc(20);

c = malloc(20);

d = malloc(20);

https://heap-exploitation.dhavalkapil.com/attacks/first_fit

Another Example

char *a = malloc(20); // 0x555597d0

char *b = malloc(20); // 0x55559860

char *c = malloc(20); // 0x555598f0

char *d = malloc(20); // 0x55559980

free(a);

free(b);

free(c);

free(d);

a = malloc(20); // 0x55559980

b = malloc(20); // 0x555598f0

c = malloc(20); // 0x55559860

d = malloc(20); // 0x555597d0 FILO

https://heap-exploitation.dhavalkapil.com/attacks/first_fit

Heap Exploitation

Heap Overflow

● Buffer overflows are basically the same on the heap as they are on
the stack

● Lots of cool and complex things like objects/structs end up on the
heap
○ Anything that handles the data you just corrupted is now viable

attack surface in the application
● It’s common to put function pointers in structs which generally are

malloc’d on the heap

code/heapoverflow1

void fly()
{

printf("Flying ...\n");
}

typedef struct airplane
{

void (*pfun)();
char name[20];

} airplane;

int main()
{
 printf("fly() at %p; print_flag() at %p\n", fly,
print_flag);

 struct airplane *p1 = malloc(sizeof(airplane));
 printf("Airplane 1 is at %p\n", p1);

 struct airplane *p2 = malloc(sizeof(airplane));
 printf("Airplane 2 is at %p\n", p2);

 p1->pfun = fly;
 p2->pfun = fly;

 fgets(p2->name, 10, stdin);
 fgets(p1->name, 100, stdin);

 p1->pfun();
 p2->pfun();

 free(p1);
 free(p2);
 return 0;
}

code/heapoverflow1 64bit

void fly()
{

printf("Flying ...\n");
}

typedef struct airplane
{

void (*pfun)();
char name[20];

} airplane;

int main()
{
 printf("fly() at %p; print_flag() at %p\n", fly,
print_flag);

 struct airplane *p1 = malloc(sizeof(airplane));
 printf("Airplane 1 is at %p\n", p1);

 struct airplane *p2 = malloc(sizeof(airplane));
 printf("Airplane 2 is at %p\n", p2);

 p1->pfun = fly;
 p2->pfun = fly;

 fgets(p2->name, 10, stdin);
 fgets(p1->name, 100, stdin);

 p1->pfun();
 p2->pfun();

 free(p1);
 free(p2);
 return 0;
}

H

L

Size (8)

Prev_size (8)

Pfun (8)

name (24)

Size (8)

Prev_size (8)

Pfun (8)

name (24)

Airplane 1

Airplane 2

code/heapoverflow1 64bit

void fly()
{

printf("Flying ...\n");
}

typedef struct airplane
{

void (*pfun)();
char name[20];

} airplane;

int main()
{
 printf("fly() at %p; print_flag() at %p\n", fly,
print_flag);

 struct airplane *p1 = malloc(sizeof(airplane));
 printf("Airplane 1 is at %p\n", p1);

 struct airplane *p2 = malloc(sizeof(airplane));
 printf("Airplane 2 is at %p\n", p2);

 p1->pfun = fly;
 p2->pfun = fly;

 fgets(p2->name, 10, stdin);
 fgets(p1->name, 100, stdin);

 p1->pfun();
 p2->pfun();

 free(p1);
 free(p2);
 return 0;
}

H

L

Size (8)

Prev_size (8)

Pfun (8)

name (24)

Size (8)

Prev_size (8)

Pfun (8)

name (24)

Airplane 1

Airplane 2

Exploit looks like

python2 -c "print 'a\n' + 'a'*40 + '\x??\x??\x??\x??\x??\x??\x??\x??'" |
./heapoverflow64

Use after free (UAF)

A class of vulnerability where data on the heap is freed, but
a leftover reference or ‘dangling pointer’ is used by the code
as if the data were still valid.

Most popular in Web Browsers, complex programs

H

L

Chunk 1 - Buf (32)

Chunk 1 - Chunk Size (8)

Chunk 1 - Previo Size (8)

Old Data

Chunk 2 - Chunk Size (8)

Chunk 2 - Previo Size (8)

Chunk 3 - Buf (16)

Chunk 3 - Chunk Size (8)

Chunk 3 - Previo Size (8)

Chunk 4 - Buf

Chunk 4 - Chunk Size (8)

Chunk 4 - Previo Size (8)

Use after free (UAF)

….

.data

.text

Heap

Stack

…

…

Pointer

H

L

Chunk 1 - Buf (32)

Chunk 1 - Chunk Size (8)

Chunk 1 - Previo Size (8)

Freed

Chunk 2 - Chunk Size (8)

Chunk 2 - Previo Size (8)

Chunk 3 - Buf (16)

Chunk 3 - Chunk Size (8)

Chunk 3 - Previo Size (8)

Chunk 4 - Buf

Chunk 4 - Chunk Size (8)

Chunk 4 - Previo Size (8)

Use after free (UAF)

….

.data

.text

Heap

Stack

…

…

Pointer

H

L

Chunk 1 - Buf (32)

Chunk 1 - Chunk Size (8)

Chunk 1 - Previo Size (8)

New data

Chunk 2 - Chunk Size (8)

Chunk 2 - Previo Size (8)

Chunk 3 - Buf (16)

Chunk 3 - Chunk Size (8)

Chunk 3 - Previo Size (8)

Chunk 4 - Buf

Chunk 4 - Chunk Size (8)

Chunk 4 - Previo Size (8)

Use after free (UAF)

….

.data

.text

Heap

Stack

…

…

Pointer

Dangling Pointer

Dangling Pointer
– A left over pointer in your code that references free’d data
and is prone to be re-used
– As the memory it’s pointing at was freed, there’s no
guarantees on what data is there now
– Also known as stale pointer, wild pointer

Exploit UAF

To exploit a UAF, you usually have to allocate a different type of object
over the one you just freed

code/heapuaf1 32bit

void fly()
{

printf("Flying ...\n");
}

typedef struct airplane
{

void (*pfun)();
char name[20];

} airplane;

typedef struct car
{
 int volume;
 char name[20];
} car;

int main()

{ printf("fly() at %p; print_flag() at %u\n", fly, (unsigned int)print_flag);

 struct airplane *p = malloc(sizeof(airplane));

 printf("Airplane is at %p\n", p);

 p->pfun = fly;

 p->pfun();

 free(p);

 struct car *p1 = malloc(sizeof(car));

 printf("Car is at %p\n", p1);

 int volume;

 printf("What is the volume of the car?\n");

 scanf("%u", &volume);

 p1->volume = volume;

 p->pfun();

 free(p);

 return 0;

}

code/heapuaf2 32bit

void fly()
{

printf("Flying ...\n");
}

typedef struct airplane
{

int model;
void (*pfun)();
char name[20];

} airplane;

typedef struct car
{
 long long volume;
 char name[20];
} car;

int main()

{ printf("print_flag() at %p\n", print_flag);

 struct airplane *p = malloc(sizeof(airplane));

 printf("An airplane object is created at %p\n", p);

 p->pfun = fly;

 p->pfun();

 printf("The airplane object has been freed ...\n");

 free(p);

 struct car *p1 = malloc(sizeof(car));

 printf("A car object is created at %p\n", p1);

 long long volume;

 printf("Input a volume for your car ...\n");

 scanf("%llu", &volume);

 p1->volume = volume;

 printf("Making a use-after-free call; calling airplane flying again ...\n");

 p->pfun();

 free(p1);

 return 0;}

Double free; fastbin_dup
int main()

{ void *ptrs[8];

for (int i=0; i<8; i++) {

ptrs[i] = malloc(8);

}

for (int i=0; i<7; i++) {

free(ptrs[i]);

}

int *a = calloc(1, 8);

int *b = calloc(1, 8);

int *c = calloc(1, 8);

free(a);

free(b);

free(a);

a = calloc(1, 8);

b = calloc(1, 8);

c = calloc(1, 8);

}

https://github.com/shellphish/how2heap/

Double free; fastbin_dup

https://github.com/shellphish/how2heap/

Double free; fastbin_dup_into_stack
int main()

{

void *ptrs[7];

for (int i=0; i<7; i++) {ptrs[i] = malloc(8);}

for (int i=0; i<7; i++) {free(ptrs[i]);}

unsigned long long stack_var;

int *a = calloc(1,8); int *b = calloc(1,8); int *c = calloc(1,8);

free(a); free(b); free(a);

unsigned long long *d = calloc(1,8);

fprintf(stderr, "2nd calloc(1,8): %p\n", calloc(1,8));

stack_var = 0x20;

d = (unsigned long long) (((char)&stack_var) - sizeof(d));

fprintf(stderr, "3rd calloc(1,8): %p, putting the stack address on the free list\n", calloc(1,8));

void *p = calloc(1,8);

fprintf(stderr, "4th calloc(1,8): %p\n", p);

assert(p == 8+(char *)&stack_var);

// assert((long)__builtin_return_address(0) == *(long *)p);

} https://github.com/shellphish/how2heap/blob/master/glibc_2.31/fastbin_dup_into_stack.c

Fake chunk size

returns 'a'

Fill tcache bin for size 0x20

Double free

returns 'b'; ‘a’ is on top

a is changed; a->next points to stack_var

‘a’ returned again

stack_var returned

Double free; fastbin_dup_into_stack

https://github.com/shellphish/how2heap/

Historical: Consolidating chunks when free()-d

When a previously allocated chunk is free()-d, it can be either consolidated
with previous (backward consolidation) and/or follow (forward consolidation) chunks,
if they are free.

This ensures that there are no two adjacent free chunks in memory. The resulting
chunk is then placed in a bin, which is a doubly linked list of free chunks of a
certain size.

There is a set of bins for chunks of different sizes:
■ 64 bins of size 8 ■ 32 bins of size 64 ■ 16 bins of size 512
■ 8 bins of size 4096 ■ 4 bins of size 32768 ■ 2 bins of size 262144
■ 1 bin of size what’s left

Historical: Example Bin with Three Free Chunks

FD and BK are pointers to “next”
and “previous” chunks inside a
linked list of a bin, not adjacent
physical chunks.

Pointers to chunks, physically next
to and previous to this one in
memory, can be obtained from
current chunks by using size and
prev_size offsets.

Historical: Pointers to physically next to and previous chunk

/* Ptr to next physical malloc_chunk. */
#define next_chunk(p) ((mchunkptr)(((char*)(p)) + ((p)->size & ~PREV_INUSE)))

/* Ptr to previous physical malloc_chunk */
#define prev_chunk(p) ((mchunkptr)(((char*)(p)) - ((p)->prev_size)))

Unlink() a Free Chunk P from the Bin

#define unlink(P, BK, FD) {
BK = P->bk;
FD = P->fd;
FD->bk = BK;
BK->fd = FD;

}

Chunk 1 - Chunk Size

Chunk 1 - Previo Size

…

Chunk P - Chunk Size

Chunk P - Previo Size

…

Chunk 3 - Chunk Size

Chunk 3 - Previo Size

Chunk 1 - bk

Chunk 1 - fd

H

L

…

Chunk P - bk

Chunk P - fd

Chunk 3 - bk

Chunk 3 - fd

Unlink() a Free Chunk P from the Bin

#define unlink(P, BK, FD) {
BK = P->bk;
FD = P->fd;
FD->bk = BK;
BK->fd = FD;

}

Chunk 1 - Chunk Size

Chunk 1 - Previo Size

…

Chunk P - Chunk Size

Chunk P - Previo Size

…

Chunk 3 - Chunk Size

Chunk 3 - Previo Size

Chunk 1 - bk

Chunk 1 - fd

H

L

…

Chunk P - bk

Chunk P - fd

Chunk 3 - bk

Chunk 3 - fd

BK

Unlink() a Free Chunk P from the Bin

#define unlink(P, BK, FD) {
BK = P->bk;
FD = P->fd;
FD->bk = BK;
BK->fd = FD;

}

Chunk 1 - Chunk Size

Chunk 1 - Previo Size

…

Chunk P - Chunk Size

Chunk P - Previo Size

…

Chunk 3 - Chunk Size

Chunk 3 - Previo Size

Chunk 1 - bk

Chunk 1 - fd

H

L

…

Chunk P - bk

Chunk P - fd

Chunk 3 - bk

Chunk 3 - fd

BK

FD

Unlink() a Free Chunk P from the Bin

#define unlink(P, BK, FD) {
BK = P->bk;
FD = P->fd;
FD->bk = BK;
BK->fd = FD;

}

Chunk 1 - Chunk Size

Chunk 1 - Previo Size

…

Chunk P - Chunk Size

Chunk P - Previo Size

…

Chunk 3 - Chunk Size

Chunk 3 - Previo Size

Chunk 1 - bk

Chunk 1 - fd

H

L

…

Chunk P - bk

Chunk P - fd

Chunk 3 - bk

Chunk 3 - fd

BK

FD

Unlink() from an Attacker’s Point of View

*(P->fd+12) = P->bk;
// 4 bytes for size, 4 bytes for prev_size and 4 bytes for fd

*(P->bk+8) = P->fd;
// 4 bytes for size, 4 bytes for prev_size

Chunk 1 - Chunk Size

Chunk 1 - Previo Size

…

Chunk P - Chunk Size

Chunk P - Previo Size

…

Chunk 3 - Chunk Size

Chunk 3 - Previo Size

Chunk 1 - bk

Chunk 1 - fd

H

L

…

Chunk P - bk

Chunk P - fd

Chunk 3 - bk

Chunk 3 - fd

BK

FD

Arbitrary write attack?

If an attacker is able to overwrite these two
pointers and force the call to unlink(), he can
overwrite any memory location.

The free() Algorithm

● free(0) has no effect.

● If a returned chunk borders the current high end of memory (wilderness chunk), it is
consolidated into the wilderness chunk, and if the total unused topmost memory
exceeds the trim threshold, malloc_trim() is called.

● Other chunks are consolidated as they arrive, and placed in corresponding bins.

The free() Algorithm - last case

● If no adjacent chunks are free, then the freed chunk is simply linked into
corresponding with bin via frontlink().

● If the chunk next in memory to the freed one is free and if this next chunk borders on
wilderness, then both are consolidated with the wilderness chunk.

● If not, and the previous or next chunk in memory is free and they are not part of a
most recently split chunk (this splitting is part of malloc() behavior and is not
significant to us here), they are taken off their bins via unlink(). Then they are merged
(through forward or backward consolidation) with the chunk being freed and placed
into a new bin according to the resulting size using frontlink(). If any of them are part
of the most recently split chunk, they are merged with this chunk and kept out of bins.
This last bit is used to make certain operations faster.

1. Overwrite A and B
2. Create a fake

chunk F1 and F2,
so that when
free(A), unlink(F1)
is also called.

3. F1->FD has the
address we want
to overwrite and
F1->BK has the
data we want to
overwrite

Reference

Vudo - An object superstitiously believed to embody magical powers https://phrack.org/issues/57/8.html
JPEG COM Marker Processing Vulnerability https://www.openwall.com/articles/JPEG-COM-Marker-Vulnerability
Once upon a free() https://phrack.org/issues/57/9.html
The Malloc Maleficarum https://seclists.org/bugtraq/2005/Oct/118
Educational Heap Exploitation by Shellfish https://github.com/shellphish/how2heap
Heap exploitation https://heap-exploitation.dhavalkapil.com/
Automated heap security analysis engine https://github.com/angr/heaphopper

https://phrack.org/issues/57/8.html
https://www.openwall.com/articles/JPEG-COM-Marker-Vulnerability
https://phrack.org/issues/57/9.html
https://seclists.org/bugtraq/2005/Oct/118
https://github.com/shellphish/how2heap
https://heap-exploitation.dhavalkapil.com/
https://github.com/angr/heaphopper

